Evaluation of Intrinsic Charge Carrier Transport at Insulator-Semiconductor Interfaces Probed by a Non-Contact Microwave-Based Technique

نویسندگان

  • Yoshihito Honsho
  • Tomoyo Miyakai
  • Tsuneaki Sakurai
  • Akinori Saeki
  • Shu Seki
چکیده

We have successfully designed the geometry of the microwave cavity and the thin metal electrode, achieving resonance of the microwave cavity with the metal-insulator-semiconductor (MIS) device structure. This very simple MIS device operates in the cavity, where charge carriers are injected quantitatively by an applied bias at the insulator-semiconductor interface. The local motion of the charge carriers was clearly probed through the applied external microwave field, also giving the quantitative responses to the injected charge carrier density and charge/discharge characteristics. By means of the present measurement system named field-induced time-resolved microwave conductivity (FI-TRMC), the pentacene thin film in the MIS device allowed the evaluation of the hole and electron mobility at the insulator-semiconductor interface of 6.3 and 0.34 cm² V⁻¹ s⁻¹, respectively. This is the first report on the direct, intrinsic, non-contact measurement of charge carrier mobility at interfaces that has been fully experimentally verified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Field Dependent Charge Carrier Transport for Organic Semiconductors at the Time of Flight Configuration

In this paper, we used the time-of-flight (TOF) of a charge packet, that injected by a voltage pulse to calculate the drift velocity and mobility of holes in organic semiconducting polymers. The technique consists in applying a voltage to the anode and calculating the time delay in the appearance of the injected carriers at the other contact. The method is a simple way to determine the charge t...

متن کامل

Electrostatics of nanowire transistors

S The electrostatics of nanowire transistors are studied by solving the Poisson equation self-consistently with the equilibrium carrier statistics of the nanowire. For a one-dimensional, intrinsic nanowire channel, charge transfer from the metal contacts is important. We examine how the charge transfer depends on the insulator and the metal/semiconductor Schottky barrier height. We also show th...

متن کامل

Evaluation of the intrinsic charge carrier transporting properties of linear- and bent-shaped π-extended benzo-fused thieno[3,2-b]thiophenes.

The intrinsic charge carrier transporting properties of two isomeric linear- and bent-shaped 7-ring benzo-fused thieno[3,2-b] thiophenes and their octyl-substituted analogues were newly investigated using flash-photolysis (FP-) and field-induced (FI-) time-resolved microwave conductivity (TRMC) techniques. FP-TRMC study in the solid state revealed that octyl-substitution potentially improved th...

متن کامل

Transport properties of copper phthalocyanine based organic electronic devices

As a particular class of planar aromatic compounds, metal phthalocyanines are considered for numerous applications since they show a variety of interesting physical and chemical properties. In particular, the semiconducting copper phthalocyanine (CuPc), is employed in several optoelectronic devices such as organic light-emitting diodes or organic photovoltaic cells. The ambipolar charge carrier...

متن کامل

Organic field-effect transistors using single crystals.

Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucida...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013