On the evolutionary relationship between chondrocytes and osteoblasts

نویسندگان

  • Patsy Gómez-Picos
  • B. Frank Eames
چکیده

Vertebrates are the only animals that produce bone, but the molecular genetic basis for this evolutionary novelty remains obscure. Here, we synthesize information from traditional evolutionary and modern molecular genetic studies in order to generate a working hypothesis on the evolution of the gene regulatory network (GRN) underlying bone formation. Since transcription factors are often core components of GRNs (i.e., kernels), we focus our analyses on Sox9 and Runx2. Our argument centers on three skeletal tissues that comprise the majority of the vertebrate skeleton: immature cartilage, mature cartilage, and bone. Immature cartilage is produced during early stages of cartilage differentiation and can persist into adulthood, whereas mature cartilage undergoes additional stages of differentiation, including hypertrophy and mineralization. Functionally, histologically, and embryologically, these three skeletal tissues are very similar, yet unique, suggesting that one might have evolved from another. Traditional studies of the fossil record, comparative anatomy and embryology demonstrate clearly that immature cartilage evolved before mature cartilage or bone. Modern molecular approaches show that the GRNs regulating differentiation of these three skeletal cell fates are similar, yet unique, just like the functional and histological features of the tissues themselves. Intriguingly, the Sox9 GRN driving cartilage formation appears to be dominant to the Runx2 GRN of bone. Emphasizing an embryological and evolutionary transcriptomic view, we hypothesize that the Runx2 GRN underlying bone formation was co-opted from mature cartilage. We discuss how modern molecular genetic experiments, such as comparative transcriptomics, can test this hypothesis directly, meanwhile permitting levels of constraint and adaptation to be evaluated quantitatively. Therefore, comparative transcriptomics may revolutionize understanding of not only the clade-specific evolution of skeletal cells, but also the generation of evolutionary novelties, providing a modern paradigm for the evolutionary process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro.

Biological integration of cartilage grafts with subchondral bone remains a significant clinical challenge. We hypothesize that interaction between osteoblasts and chondrocytes is important in regenerating the osteochondral interface on tissue-engineered osteochondral grafts. We describe here a sequential co-culturing model which permits cell-cell contact and paracrine interaction between osteob...

متن کامل

Regulation of chondrocyte differentiation level via co-culture with osteoblasts.

The close apposition of osteoblasts and chondrocytes in bone and their interaction during bone development and regeneration suggest that they may each regulate the other's growth and differentiation. In these studies, osteoblasts and chondrocytes were co-cultured in vitro, with both direct and indirect contact. Proliferation of the co-cultured chondrocytes was enhanced using soluble factors pro...

متن کامل

An Evolutionary Relationship Between Stearoyl-CoA Desaturase (SCD) Protein Sequences Involved in Fatty Acid Metabolism

Background: Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino aci...

متن کامل

Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes

AIM The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk. MATERIALS AND METHODS Osteoarthritic (OA) human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM). The production of aggrecan, matrix...

متن کامل

Effects of Osteoblast and Chondrocyte Co-culture on Chondrogenic and Osteoblasticphenotypes in Vitro

INTRODUCTION: Osteoarthritis is the predominant form of arthritis, with 21 million Americans suffering from this degenerative condition.[1] Articular cartilage has an inherently poor repair potential, thus clinical intervention is needed. A recent area of interest is the formation of osteochondral grafts[2-4] and the design of interfaces to facilitate integration of bone with cartilage. The ost...

متن کامل

Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healing in Mice

One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015