Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression.
نویسندگان
چکیده
Compelling evidence suggests that major depression is associated with dysfunction of the brain glutamatergic transmission, and that the glutamatergic N-methyl-d-aspartate (NMDA) receptor plays a role in antidepressant activity. Recent post-mortem studies demonstrate that depression is associated with altered concentrations of proteins associated with NMDA receptor signalling in the brain. The present study investigated glutamate signalling proteins in the amygdala from depressed subjects, given strong evidence for amygdala pathology in depression. Lateral amygdala samples were obtained from 13-14 pairs of age- sex-, and post-mortem-interval-matched depressed and psychiatrically healthy control subjects. Concentrations of NR1 and NR2A subunits of the NMDA receptor, as well as NMDA receptor-associated proteins such as post-synaptic density protein-95 (PSD-95) and neuronal nitric oxide synthase (nNOS) were measured by Western immunoblotting. Additionally, levels of enzymes involved in glutamate metabolism, including glutamine synthetase and glutamic acid decarboxylase (GAD-67), were measured in the same amygdala samples. NR2A protein levels were markedly and significantly elevated (+115%, p=0.03) in depressed subjects compared to controls. Interestingly, PSD-95 levels were also highly elevated (+128%, p=0.01) in the same depressed subjects relative to controls. Amounts of NR1, nNOS, glutamine synthetase, and GAD-67 were unchanged. Increased levels of NR2A and PSD-95 suggest that glutamate signalling at the NMDA receptor in the amygdala is disrupted in depression.
منابع مشابه
Delineation of additional PSD-95 binding domains within NMDA receptor NR2 subunits reveals differences between NR2A/PSD-95 and NR2B/PSD-95 association.
N-methyl-D-aspartate (NMDA) receptors are clustered at synapses via their association with the PSD-95 (post-synaptic density-95) membrane associated guanylate kinase (MAGUK) family of scaffolding proteins. PSD-95 is the best characterized of this family. It is known to associate with NMDA receptor NR2 subunits via a conserved ES(E/D)V amino acid sequence located at their C-termini and thus to p...
متن کاملDevelopmental loss of miniature N-methyl-D-aspartate receptor currents in NR2A knockout mice.
The N-methyl-d-aspartate (NMDA) glutamate receptor (NMDAR), long implicated in developmental plasticity, shows decay time kinetics that shorten postnatally as NR2A subunits are added to the receptor. Neither the mechanism nor immediate effect of this change is known. We studied developing NMDAR currents by using visual neurons in slices from NR2A knockout (NR2AKO) and WT mice. Both strains show...
متن کاملInteractions of postsynaptic density-95 and the NMDA receptor 2 subunit control calpain-mediated cleavage of the NMDA receptor.
The calcium-dependent protease calpain cleaves the NMDA receptor 2 (NR2) subunit of the NMDA receptor both in vitro and in vivo and thus potentially modulates NMDA receptor function and turnover. We examined the ability of postsynaptic density-95 (PSD-95) protein to alter the calpain-mediated cleavage of NR2A and NR2B. Coexpression of PSD-95 with NMDA receptors in human embryonic kidney 293 cel...
متن کاملHippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor.
NMDA receptor, Ca(2+)/calmodulin-dependent protein kinase II (alphaCaMKII), and postsynaptic density 95 (PSD-95) are three major components of the PSD fraction. Both alphaCaMKII and PSD-95 have been shown previously to bind NR2 subunits of the NMDA receptor complex. The nature and mechanisms of targeting to the NMDA receptor subunits are, however, not completely understood. Here we report that ...
متن کاملChronic Zinc Exposure Decreases the Surface Expression of NR2A-Containing NMDA Receptors in Cultured Hippocampal Neurons
BACKGROUND Zinc distributes widely in the central nervous system, especially in the hippocampus, amygdala and cortex. The dynamic balance of zinc is critical for neuronal functions. Zinc modulates the activity of N-methyl-D-aspartate receptors (NMDARs) through the direct inhibition and various intracellular signaling pathways. Abnormal NMDAR activities have been implicated in the aetiology of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The international journal of neuropsychopharmacology
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2009