The Intensional Content of Rice’s Theorem (Pearl)

نویسنده

  • Andrea Asperti
چکیده

The proofs of major results of Computability Theory like Rice, Rice-Shapiro or Kleene’s fixed point theorem hide more information of what is usually expressed in their respective statements. We make this information explicit, allowing to state stronger, complexity theoretic-versions of all these theorems. In particular, we replace the notion of extensional set of indices of programs, by a set of indices of programs having not only the same extensional behavior but also similar complexity (Complexity Clique). We prove, under very weak complexity assumptions, that any recursive Complexity Clique is trivial, and any r.e. Complexity Clique is an extensional set (and thus satisfies Rice-Shapiro conditions). This allows, for instance, to use Rice’s argument to prove that the property of having polynomial complexity is not decidable, and to use Rice-Shapiro to conclude that it is not even semi-decidable. We conclude the paper with a discussion of “complexity-theoretic” versions of Kleene’s Fixed Point Theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Semantics of Intensionality and Intensional Recursion

Intensionality is a phenomenon that occurs in logic and computation. In the most general sense, a function is intensional if it operates at a level finer than (extensional) equality. This is a familiar setting for computer scientists, who often study different programs or processes that are interchangeable, i.e. extensionally equal, even though they are not implemented in the same way, so inten...

متن کامل

Looking for an Analogue of Rice's Theorem in Circuit Complexity Theory

Rice’s Theorem says that every nontrivial semantic property of programs is undecidable. In this spirit we show the following: Every nontrivial absolute (gap, relative) counting property of circuits is UP-hard with respect to polynomial-time Turing reductions. For generators [31] we show a perfect analogue of Rice’s Theorem. Mathematics Subject Classification: 03D15, 68Q15.

متن کامل

Rice-Style Theorems for Complexity Theory

Rice’s Theorem states that all nontrivial language properties of recursively enumerable sets are undecidable. Borchert and Stephan [BS00] started the search for complexity-theoretic analogs of Rice’s Theorem, and proved that every nontrivial counting property of boolean circuits is UP-hard. Hemaspaandra and Rothe [HR00] improved the UP-hardness lower bound to UPO(1)-hardness. The present paper ...

متن کامل

Lower Bounds and the Hardness of Counting Properties

Rice’s Theorem states that all nontrivial language properties of recursively enumerable sets are undecidable. Borchert and Stephan [BS00] started the search for complexity-theoretic analogs of Rice’s Theorem, and proved that every nontrivial counting property of boolean circuits is UP-hard. Hemaspaandra and Rothe [HR00] improved the UP-hardness lower bound to UPO(1)-hardness. The present paper ...

متن کامل

اثر هیدروژل و رژیم های آبیاری بر میزان کلروفیل، نیتروژن و بعضی شاخص‌های رشد و عملکرد ارزن علوفه‌ای (L.‌ Pennisetum glaucum)

Drought stress has an important role in yield reduction of crops. To investigate the effects of applying zeolite hydrogel (as a superabsorbent) in reduction of adverse effects of drought stress on chlorophyll content, nitrogen, growth indices and their relationships with quantitative and qualitative yield of pearl millet (cv. Nitrifeed), a split plot experiment (in space and time), based on ran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007