A novel method for attribute reduction of covering decision systems
نویسندگان
چکیده
Attribute reduction has become an important step in pattern recognition and machine learning tasks. Covering rough sets, as a generalization of classical rough sets, have attracted wide attention in both theory and application. This paper provides a novel method for attribute reduction based on covering rough sets. We review the concepts of consistent and inconsistent covering decision systems and their reducts and we develop a judgment theorem and a discernibility matrix for each type of covering decision system. Furthermore, we present some basic structural properties of attribute reduction with covering rough sets. Based on a discernibility matrix, we develop a heuristic algorithm to find a subset of attributes that approximate a minimal reduct. Finally, the experimental results for UCI data sets show that the proposed reduction approach is an effective technique for addressing numerical and categorical data and is more efficient than the method presented in the paper [D.G. Chen, C.Z. Wang, Q.H. Hu, A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets, Information Sciences 177(17) (2007) 3500–3518]. 2013 Elsevier Inc. All rights reserved.
منابع مشابه
Horizontal representation of a hesitant fuzzy set and its application to multiple attribute decision making
The main aim of this paper is to present a novel method for ranking hesitant fuzzy sets (HFSs) based on transforming HFSs into fuzzy sets (FSs). The idea behind the method is an interesting HFS decomposition which is referred here to as the horizontal representation in the current study. To show the validity of the proposed ranking method, we apply it to solve a multi-attribute decision-making ...
متن کاملA novel ranking method for intuitionistic fuzzy set based on information fusion and application to threat assessment
A novel ranking method based on multi-time information fusion is proposed for intuitionistic fuzzy sets (IFSs) and applied to the threat assessment problem, a multi-attribute decision making (MADM) one. This method integrates a designed intuitionistic fuzzy entropy (IFE), the closeness degree of technique for order preference by similarity to ideal solution (TOPSIS), the decision maker¡¯s (DM¡¯...
متن کاملAttribute reduction of covering decision systems by hypergraph model
Attribute reduction (also called feature subset selection) plays an important role in rough set theory. Different from the classical attribute reduction algorithms, the methods of attribute reduction based on covering rough sets appear to be suitable for numerical data. However, it is time-consuming in dealing with the large-scale data. In this paper, we study the problem of attribute reduction...
متن کاملMultiple attribute decision making with triangular intuitionistic fuzzy numbers based on zero-sum game approach
For many decision problems with uncertainty, triangular intuitionistic fuzzy number is a useful tool in expressing ill-known quantities. This paper develops a novel decision method based on zero-sum game for multiple attribute decision making problems where the attribute values take the form of triangular intuitionistic fuzzy numbers and the attribute weights are unknown. First, a new value ind...
متن کاملRelated families-based attribute reduction of dynamic covering information systems with variations of object sets
In practice, there are many dynamic covering decision information systems, and knowledge reduction of dynamic covering decision information systems is a significant challenge of covering-based rough sets. In this paper, we first study mechanisms of constructing attribute reducts for consistent covering decision information systems when adding objects using related families. We also employ examp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 254 شماره
صفحات -
تاریخ انتشار 2014