The Protein Network of HIV Budding
نویسندگان
چکیده
HIV release requires TSG101, a cellular factor that sorts proteins into vesicles that bud into multivesicular bodies (MVB). To test whether other proteins involved in MVB biogenesis (the class E proteins) also participate in HIV release, we identified 22 candidate human class E proteins. These proteins were connected into a coherent network by 43 different protein-protein interactions, with AIP1 playing a key role in linking complexes that act early (TSG101/ESCRT-I) and late (CHMP4/ESCRT-III) in the pathway. AIP1 also binds the HIV-1 p6(Gag) and EIAV p9(Gag) proteins, indicating that it can function directly in virus budding. Human class E proteins were found in HIV-1 particles, and dominant-negative mutants of late-acting human class E proteins arrested HIV-1 budding through plasmal and endosomal membranes. These studies define a protein network required for human MVB biogenesis and indicate that the entire network participates in the release of HIV and probably many other viruses.
منابع مشابه
Ultrastructural Study of Rotavirus Replication and Localization of the Intermediate Capsid Protein VP6
Rotavirus, a triple-layered non-enveloped member of the Reoviridae family, obtained a transient membrane envelope when newly synthesized subviral particles bud into the endoplasmic reticulum (ER). As rotavirus particles mature, they lose their transient membrane and obtain outer layer. It is mostly believed that only double layered particles bud into the ER. The present study describes that the...
متن کاملHIV Pol Inhibits HIV Budding and Mediates the Severe Budding Defect of Gag-Pol
The prevailing hypothesis of HIV budding posits that the viral Gag protein drives budding, and that the Gag p6 peptide plays an essential role by recruiting host-cell budding factors to sites of HIV assembly. HIV also expresses a second Gag protein, p160 Gag-Pol, which lacks p6 and fails to bud from cells, consistent with the prevailing hypothesis of HIV budding. However, we show here that the ...
متن کاملTsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding
Like other enveloped viruses, HIV-1 uses cellular machinery to bud from infected cells. We now show that Tsg101 protein, which functions in vacuolar protein sorting (Vps), is required for HIV-1 budding. The UEV domain of Tsg101 binds to an essential tetrapeptide (PTAP) motif within the p6 domain of the structural Gag protein and also to ubiquitin. Depletion of cellular Tsg101 by small interferi...
متن کاملThe nucleocapsid domain of Gag is dispensable for actin incorporation into HIV-1 and for association of viral budding sites with cortical F-actin.
Actin and actin-binding proteins are incorporated into HIV-1 particles, and F-actin has been suggested to bind the NC domain in HIV-1 Gag. Furthermore, F-actin has been frequently observed in the vicinity of HIV-1 budding sites by cryo-electron tomography (cET). Filamentous structures emanating from viral buds and suggested to correspond to actin filaments have been observed by atomic force mic...
متن کاملCloning, Expression, Purification and Immunoreactivity Analysis of Gag Derived Protein p17 from HIV-1 CRF35 in Fusion with Thioredoxin from Human Subjects
So far, recombinant antigens of HIV-1, the etiologic cause of Acquired Immunodeficiency Syndrome (AIDS), have been widely used for the diagnosis and vaccine development. P17 or the matrix protein formed by the proteolytic cleavage of gag is strongly antigenic and is as conserved and immunogenic as p24. In some cases, antibodies to p17 are more prevalent than antibodies to p24 and the decline in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 114 شماره
صفحات -
تاریخ انتشار 2003