Differential Evolution Algorithm for Solving Multi-objective Optimization Problems

نویسندگان

  • RADHA THANGARAJ
  • MILLIE PANT
چکیده

This paper presents a modified Differential Evolution (DE) algorithm called OCMODE for solving multi-objective optimization problems. First, the initialization phase is improved by using the opposition based learning. Further, a time varying scale factor F employing chaotic sequence is used which helps to get a well distributed Pareto front by the help of non dominated and crowding distance sorting. The performance of the OCMODE algorithm is measured on the set of five ZDT bi-objective benchmark functions and the results are compared with some multi-objective evolutionary algorithms in the literature. The numerical results show the efficiency of the proposed algorithm. Key-Words: Optimization, differential evolution, chaotic sequence, multi-objective optimization

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined Economic and Emission Dispatch Solution Using Exchange Market Algorithm

This paper proposes the exchange market algorithm (EMA) to solve the combined economic and emission dispatch (CEED) problems in thermal power plants. The EMA is a new, robust and efficient algorithm to exploit the global optimum point in optimization problems. Existence of two seeking operators in EMA provides a high ability in exploiting global optimum point. In order to show the capabilities ...

متن کامل

Pareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm

Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...

متن کامل

Non-dominated Sorting Differential Evolution (NSDE): An Extension of Differential Evolution for Multi-objective Optimization

Most of the real world optimization problems are multi-objective in nature. Recently, Evolutionary algorithms are gaining popularity for solving Multi-Objective Optimization Problems (MOOPs) due to their inherent advantages over traditional methods. In this paper, Differential Evolution (an evolutionary algorithm that is significantly faster and robust for optimization problems over continuous ...

متن کامل

Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect

This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance.  First the problem is encoded with a...

متن کامل

Pareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm

The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013