Reliability of algorithmic somatic copy number alteration detection from targeted capture data
نویسندگان
چکیده
Motivation Whole exome and gene panel sequencing are increasingly used for oncological diagnostics. To investigate the accuracy of SCNA detection algorithms on simulated and clinical tumor samples, the precision and sensitivity of four SCNA callers were measured using 50 simulated whole exome and 50 simulated targeted gene panel datasets, and using 119 TCGA tumor samples for which SNP array data were available. Results On synthetic exome and panel data, VarScan2 mostly called false positives, whereas Control-FREEC was precise (>90% correct calls) at the cost of low sensitivity (<40% detected). ONCOCNV was slightly less precise on gene panel data, with similarly low sensitivity. This could be explained by low sensitivity for amplifications and high precision for deletions. Surprisingly, these results were not strongly affected by moderate tumor impurities; only contaminations with more than 60% non-cancerous cells resulted in strongly declining precision and sensitivity. On the 119 clinical samples, both Control-FREEC and CNVkit called 71.8% and 94%, respectively, of the SCNAs found by the SNP arrays, but with a considerable amount of false positives (precision 29% and 4.9%). Discussion Whole exome and targeted gene panel methods by design limit the precision of SCNA callers, making them prone to false positives. SCNA calls cannot easily be integrated in clinical pipelines that use data from targeted capture-based sequencing. If used at all, they need to be cross-validated using orthogonal methods. Availability and implementation Scripts are provided as supplementary information. Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.
منابع مشابه
Targeted Sequencing of Cancer-Related Genes in Colorectal Cancer Using Next-Generation Sequencing
Recent advance in sequencing technology has enabled comprehensive profiling of genetic alterations in cancer. We have established a targeted sequencing platform using next-generation sequencing (NGS) technology for clinical use, which can provide mutation and copy number variation data. NGS was performed with paired-end library enriched with exons of 183 cancer-related genes. Normal and tumor t...
متن کاملCNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing
Germline copy number variants (CNVs) and somatic copy number alterations (SCNAs) are of significant importance in syndromic conditions and cancer. Massively parallel sequencing is increasingly used to infer copy number information from variations in the read depth in sequencing data. However, this approach has limitations in the case of targeted re-sequencing, which leaves gaps in coverage betw...
متن کاملVarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing.
Cancer is a disease driven by genetic variation and mutation. Exome sequencing can be utilized for discovering these variants and mutations across hundreds of tumors. Here we present an analysis tool, VarScan 2, for the detection of somatic mutations and copy number alterations (CNAs) in exome data from tumor-normal pairs. Unlike most current approaches, our algorithm reads data from both sampl...
متن کاملValidation of Customized Cancer Panel for Detecting Somatic Mutations and Copy Number Alterations
Accurate detection of genomic alterations, especially druggable hotspot mutations in tumors, has become an essential part of precision medicine. With targeted sequencing, we can obtain deeper coverage of reads and handle data more easily with a relatively lower cost and less time than whole-exome or whole-genome sequencing. Recently, we designed a customized gene panel for targeted sequencing o...
متن کاملFocalScan: Scanning for altered genes in cancer based on coordinated DNA and RNA change
Somatic genomic copy-number alterations can lead to transcriptional activation or inactivation of tumor driver or suppressor genes, contributing to the malignant properties of cancer cells. Selection for such events may manifest as recurrent amplifications or deletions of size-limited (focal) regions. While methods have been developed to identify such focal regions, finding the exact targeted g...
متن کامل