Clinical implications of adopting Monte Carlo treatment planning for CyberKnife

نویسندگان

  • Subhash C. Sharma
  • Joseph T. Ott
  • Jamone B. Williams
  • Danny Dickow
چکیده

It is documented that well-modeled Monte Carlo dose calculation algorithms are more accurate than traditional correction-based algorithms or convolution algorithms at predicting dose distributions delivered to heterogeneous volumes. This increased accuracy has clinical implications for CyberKnife, particularly when comparing dose distributions between the ray-tracing and Monte Carlo algorithms. Differences between ray-tracing and Monte Carlo calculations are exacerbated for highly heterogeneous volumes and small field sizes. In this study, the anthropomorphic thorax phantom from the Radiological Physics Center was used to validate the accuracy of the CyberKnife Monte Carlo dose calculation algorithm. Retrospective comparisons of dose distributions calculated by ray-tracing and Monte Carlo were made for a selection of CyberKnife treatment plans; comparisons were based on target coverage and conformality. For highly heterogeneous cases, such as those involving the lungs, the ray-tracing algorithm consistently overestimated the target dose and coverage. In our sample of lung treatment plans, the average target coverage for ray-tracing calculations was 97.7%, while for Monte Carlo, the average coverage dropped to 69.2%. In each plan comparison, the same beam orientations and monitor units were used for both calculations. Significant changes in conformality were also observed. Isodose prescription lines and subsequent target coverage selected for treatment plans calculated with the ray-tracing algorithm may be different from comparable treatment plans calculated with Monte Carlo, and as such, may have clinical implications for dose prescriptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of smoothing algorithms in Monte Carlo dose calculations of cyberknife treatment plans: a lung phantom study.

AIM The Monte Carlo dose calculation algorithm yields accurate dose distributions in heterogeneous media and interfaces. The Monte Carlo calculation algorithm provided in the Multiplan Cyberknife treatment planning system (Accuray, Sunnyvale, CA, USA) has five different dose-smoothing algorithms in it. As the principle of smoothing of these algorithms is different, they can produce a disparity ...

متن کامل

Purpose:The Monte Carlo calculation algorithm in the MultiPlan (Accuray, Palo Alto, CA) treatment planning system used for CyberKnife (Accuray) robotic radiosurgery requires in-air measurements. In this study, results were compared for the impact of build-up caps using a diode

ID: 18837 Title: Improved Collimator Scattering Factor (Sc) Measurements for Small Fields Using Build-Up Caps in Robotic Radiosurgery Purpose:The Monte Carlo calculation algorithm in the MultiPlan (Accuray, Palo Alto, CA) treatment planning system used for CyberKnife (Accuray) robotic radiosurgery requires in-air measurements. In this study, results were compared for the impact of build-up caps...

متن کامل

Dose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code

Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...

متن کامل

Radial dose functions of GZP6 intracavitary brachytherapy 60Co sources: treatment planning system versus Monte Carlo calculations

Background: The Monte Carlo (MC) method is not only used for dose calculations around brachytherapy sources but also for benchmarking treatment planning systems (TPS) calculations. Materials and Methods: Three 60Co sources of GZP6 brachytherapy unit were simulated using MCNP4C MC Code. The radial dose functions were calculated by MC method and GZP6 TPS and were compared. Results: There was a go...

متن کامل

Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom

Background: In treating patients with radiation, the degree of accuracy for the delivery of tumor dose is recommended to be within ± 5% by ICRU in report 24. The experimental studies have shown that the presence of low-density inhomogeneity in areas such as the lung can lead to a greater than 30% change in the water dose data. Therefore, inhomogeneity corrections should be used in treatment pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2010