Implementation of a Marauding Insect Module (MIM, version 1.0) in the Integrated BIosphere Simulator (IBIS, version 2.6b4) dynamic vegetation–land surface model
نویسندگان
چکیده
Insects defoliate and kill plants in many ecosystems worldwide. The consequences of these natural processes on terrestrial ecology and nutrient cycling are well established, and their potential climatic effects resulting from modified land–atmosphere exchanges of carbon, energy, and water are increasingly being recognized. We developed a Marauding Insect Module (MIM) to quantify, in the Integrated BIosphere Simulator (IBIS), the consequences of insect activity on biogeochemical and biogeophysical fluxes, also accounting for the effects of altered vegetation dynamics. MIM can simulate damage from three different insect functional types: (1) defoliators on broadleaf deciduous trees, (2) defoliators on needleleaf evergreen trees, and (3) bark beetles on needleleaf evergreen trees, with the resulting impacts being estimated by IBIS based on the new, insect-modified state of the vegetation. MIM further accounts for the physical presence and gradual fall of insect-killed dead standing trees. The design of MIM should facilitate the addition of other insect types besides the ones already included and could guide the development of similar modules for other process-based vegetation models. After describing IBIS–MIM, we illustrate the usefulness of the model by presenting results spanning daily to centennial timescales for vegetation dynamics and cycling of carbon, energy, and water in a simplified setting and for bark beetles only. More precisely, we simulated 100 % mortality events from the mountain pine beetle for three locations in western Canada. We then show that these simulated impacts agree with many previous studies based on field measurements, satellite data, or modelling. MIM and similar tools should therefore be of great value in assessing the wide array of impacts resulting from insect-induced plant damage in the Earth system.
منابع مشابه
Coupling of Integrated Biosphere Simulator to Regional Climate
A description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3) is presented. IBIS introduces several key advantages to RegCM3, most notably vegetation dynamics, the coexistence of multiple plant functional types in the same grid cell, more sophisticated plant phenology, plant competition, explicit modeling of soil/plant biogeochemistry, and a...
متن کاملThe Sensitivity of Latent Heat Flux to Changes in the Radiative Forcing: A Framework for Comparing Models and Observations
A climate model must include an accurate surface physics scheme in order to examine the interactions between the land and atmosphere. Given an increase in the surface radiative forcing, the sensitivity of latent heat flux to available energy plays an important role in determining the energy budget and has a significant impact on the response of surface temperature. The Penman–Monteith equation ...
متن کاملImproving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters
Dynamic vegetation models forced with spatially homogeneous biophysical parameters are capable of producing average productivity and biomass values for the Amazon basin forest biome that are close to the observed estimates, but these models are unable to reproduce observed spatial variability. Recent observational studies have shown substantial regional spatial variability of above-ground produ...
متن کاملImproving the Simulation of the West African Monsoon Using the MIT Regional Climate Model
This paper presents an evaluation of the performance of the Massachusetts Institute of Technology (MIT) regional climate model (MRCM) in simulating the West African monsoon. The MRCM is built on the Regional ClimateModel, version 3 (RegCM3), but with several improvements, including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new surface albedo assignment method, new...
متن کاملAssessment of the Regional Climate Model Version 3 over the Maritime Continent Using Different Cumulus Parameterization and Land Surface Schemes
This paper describes an assessment of the Regional Climate Model, version 3 (RegCM3), coupled to two land surface schemes: the Biosphere–Atmosphere Transfer System, version 1e (BATS1e), and the Integrated Biosphere Simulator (IBIS). The model’s performance in simulating precipitation over the Maritime Continent was evaluated against the 3-hourly Tropical Rainfall Measuring Mission (TRMM) Multis...
متن کامل