Subject-specific toe-in or toe-out gait modifications reduce the larger knee adduction moment peak more than a non-personalized approach.
نویسندگان
چکیده
The knee adduction moment (KAM) is a surrogate measure for medial compartment knee loading and is related to the progression of knee osteoarthritis. Toe-in and toe-out gait modifications typically reduce the first and second KAM peaks, respectively. We investigated whether assigning a subject-specific foot progression angle (FPA) modification reduces the peak KAM by more than assigning the same modification to everyone. To explore the effects of motor learning on muscle coordination and kinetics, we also evaluated the peak knee flexion moment and quadriceps-hamstring co-contraction during normal walking, when subjects first learned their subject-specific FPA, and following 20 min of training. Using vibrotactile feedback, we trained 20 healthy adults to toe-in and toe-out by 5° and 10° relative to their natural FPA, then identified the subject-specific FPA as the angle where each subject maximally reduced their larger KAM peak. When walking at their subject-specific FPA, 18 subjects significantly reduced their larger KAM peak; 8 by toeing-in and 10 by toeing-out. On average, subjects reduced their larger KAM peak by 18.6 ± 16.2% when walking at their subject-specific FPA, which was more than the reductions achieved when all subjects toed-in by 10° (10.0 ± 17.1%, p = .013) or toed-out by 10° (11.0 ± 18.3%, p = .002). Quadriceps-hamstring co-contraction and the peak knee flexion moment increased when subjects first learned their subject-specific FPA, but only co-contraction returned to baseline levels following training. These findings demonstrate that subject-specific gait modifications reduce the peak KAM more than uniformly assigned modifications and have the potential to slow the progression of medial compartment knee osteoarthritis.
منابع مشابه
Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis.
The first peak of the knee adduction moment has been linked to the presence, severity, and progression of medial compartment knee osteoarthritis. The objective of this study was to evaluate toe-in gait (decreased foot progression angle from baseline through internal foot rotation) as a means to reduce the first peak of the knee adduction moment in subjects with medial compartment knee osteoarth...
متن کاملMuscle force modification strategies are not consistent for gait retraining to reduce the knee adduction moment in individuals with knee osteoarthritis.
While gait retraining paradigms that alter knee loads typically focus on modifying kinematics, the underlying muscle force modifications responsible for these kinematic changes remain largely unknown. As humans are generally thought to select uniform gait muscle patterns such as strategies based on fatigue cost functions or energy minimization, we hypothesized that a kinematic gait change known...
متن کاملJoint contact forces when minimizing the external knee adduction moment by gait modification: A computer simulation study.
BACKGROUND AND PURPOSE Gait modification is often used to reduce the external knee adduction moment (KAM) in human walking, but the relationship between KAM reduction and changes in medial knee joint contact force (JCF) is not well established. Our purpose was to examine the limiting case of KAM-based gait modification: reducing the KAM as much as possible, and the resulting effects on JCF. M...
متن کاملEffects of backward gait training protocol on knee adduction moment and impulse during walking in patients with medial knee osteoarthritis
Background and Aim: The aim of this study was to investigate the effects of backward gait training protocol on knee adduction moment and impulse in male patients with medial knee osteoarthritis. Materials and Methods: This quasi-experimental study with a pretest-posttest design included two control groups (healthy and patient) and an experimental group (subjects with medial knee osteoarthritis)...
متن کاملEvaluation of a patient-specific cost function to predict the influence of foot path on the knee adduction torque during gait.
A large external knee adduction torque during gait has been correlated with the progression of knee osteoarthritis (OA). Though foot path changes (e.g. toeing out) can reduce the adduction torque, no method currently exists to predict whether an optimal foot path exists for a specific patient. This study evaluates a patient-specific optimization cost function to predict how foot path changes in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 66 شماره
صفحات -
تاریخ انتشار 2018