Statistical performance evaluation and comparison of a Compton medical imaging system and a collimated Anger camera for higher energy photon imaging.
نویسندگان
چکیده
In radionuclide treatment, tumor cells are primarily destroyed by charged particles emitted by the compound while associated higher energy photons are used to image the tumor in order to determine radiation dose and monitor shrinkage. However, the higher energy photons are difficult to image with conventional collimated Anger cameras, since a tradeoff exists between resolution and sensitivity, and the collimator septal penetration and scattering is increased due to the high energy photons. This research compares imaging performance of the conventional Anger camera to a Compton imaging system that can have improved spatial resolution and sensitivity for high energy photons because this tradeoff is decoupled, and the effect of Doppler broadening at higher gamma energies is decreased. System performance is analyzed by the modified uniform Cramer-Rao bound (M-UCRB) algorithms based on the developed system modeling. The bound shows that the effect of Doppler broadening is the limiting factor for Compton camera performance for imaging 364.4 keV photons emitted from 131I. According to the bound, the Compton camera outperforms the collimated system for an equal number of detected events when the desired spatial resolution for a 26 cm diameter uniform disk object is better than 12 mm FWHM. For a 3D cylindrical phantom, the lower bound on variance for the collimated camera is greater than for the Compton imaginer over the resolution range from 0.5 to 2 cm FWHM. Furthermore, the detection sensitivity of the proposed Compton imaging system is about 15-20 times higher than that of the collimated Anger camera.
منابع مشابه
Evaluation of the performance of parallel-hole collimator for high resolution small animal SPECT: A Monte Carlo study
Introduction: Image quality and accuracy of in vivo activity quantification in SPECT are affected by collimator penetration and scatter components, especially in high energy imaging. These phenomena highly depend on the collimator characteristic and photon energy. The presence of penetrated and scattered photons from collimator in SPECT images degrades spatial resolution, contr...
متن کاملEvaluation of performance quality of SPECT camera in Shariati Hospital of Tehran University of Medical Sciences [Persian]
In nuclear medicine, there are two methods of imaging, planar and tomography. Single photon emission computerized tomography (SPECT) shows better image details and therefore is influenced more by image parameters such as resolution, uniformity, sensitivity, etc. Manufacturers provide customers with data which are obtained by complicated and sometimes secret methods. Marketing companies te...
متن کاملTowards direct reconstruction from a gamma camera based on Compton scattering
The Compton scattering camera (sometimes called the electronically collimated camera) has been shown by others to have the potential to better the photon counting statistics and the energy resolution of the Anger camera for imaging in SPECT. By using coincident detection of Compton scattering events on two detecting planes, a photon can be localized to having been sourced on the surface of a co...
متن کاملAn alternative mathematical modeling of the scintillation camera and framework for performance analysis of gamma-ray positioning algorithms
Introduction: Substantive amount of work has been done in modeling and analyzing the scintillation camera system processes including positioning and image formation. The goal of this work is to develop a framework for analyzing performance of nonlinear positioning methods upon construction of a mathematical model of the system. In this study, the photodetector array counts are ...
متن کاملEvaluation of the Portal Imaging System Performance for an Elekta Precise Linac in Radiotherapy
Introduction: Electronic portal imaging devices (EPIDs) provide two- and three-dimensional planar and volumetric cone beam images to improve the accuracy of radiation treatment delivery. Periodic quality assurance (QA) of EPIDs is essential for dosimetric verification in radiotherapy. In this study, a QA program was implemented to evaluate the function of the EPID to be confident in applying co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 53 24 شماره
صفحات -
تاریخ انتشار 2008