About some Hadamard full propelinear (2t, 2, 2)-codes. Rank and Kernel

نویسندگان

  • I. Bailera
  • Joaquim Borges
  • Josep Rifà
چکیده

A new subclass of Hadamard full propelinear codes is introduced in this article. We define the HFP(2t, 2, 2)-codes as codes with a group structure isomorphic to C2t × C 2 2 . Concepts such as rank and dimension of the kernel are studied, and bounds for them are established. For t odd, r = 4t−1 and k = 1. For t even, r ≤ 2t and k 6= 2, and r = 2t if and only if t 6≡ 0 (mod 4).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kronecker sums to construct Hadamard full propelinear codes of type CnQ8

Hadamard matrices with a subjacent algebraic structure have been deeply studied as well as the links with other topics in algebraic combinatorics [1]. An important and pioneering paper about this subject is [5], where it is introduced the concept of Hadamard group. In addition, we find beautiful equivalences between Hadamard groups, 2-cocyclic matrices and relative difference sets [4], [7]. Fro...

متن کامل

Families of Hadamard Z2Z4Q8-codes

A Z2Z4Q8-code is a non-empty subgroup of a direct product of copies of Z_2, Z_4 and Q_8 (the binary field, the ring of integers modulo 4 and the quaternion group on eight elements, respectively). Such Z2Z4Q8-codes are translation invariant propelinear codes as the well known Z_4-linear or Z_2Z_4-linear codes. In the current paper, we show that there exist"pure"Z2Z4Q8-codes, that is, codes that ...

متن کامل

On binary 1-perfect additive codes: Some structural properties

The rank and kernel of 1-perfect additive codes is determined. Additive codes could be seen as translation-invariant propelinear codes and, in this correspondence, a characterization of propelinear codes as codes having a regular subgroup of the full group of isometries of the code is established. A characterization of the automorphism group of a 1-perfect additive code is given and also the ca...

متن کامل

On the Kernel of \mathbb Z_2^s -Linear Hadamard Codes

The Z2s -additive codes are subgroups of Z n 2s , and can be seen as a generalization of linear codes over Z2 and Z4. A Z2s -linear Hadamard code is a binary Hadamard code which is the Gray map image of a Z2s additive code. It is known that the dimension of the kernel can be used to give a complete classification of the Z4-linear Hadamard codes. In this paper, the kernel of Z2s -linear Hadamard...

متن کامل

On the Number of Nonequivalent Propelinear Extended Perfect Codes

The paper proves that there exists an exponential number of nonequivalent propelinear extended perfect binary codes of length growing to infinity. Specifically, it is proved that all transitive extended perfect binary codes found by Potapov (2007) are propelinear. All such codes have small rank, which is one more than the rank of the extended Hamming code of the same length. We investigate the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016