Hybrid consensus theoretic classification

نویسندگان

  • Jon Atli Benediktsson
  • Johannes R. Sveinsson
  • Philip H. Swain
چکیده

Hybrid classification methods based on consensus from several data sources are considered. Each data source is at first treated separately and modeled using statistical methods. Then weighting mechanisms are used to control the influence of each data source in the combined classification. The weights are optimized in order to improve the combined classification accuracies. Both linear and nonlinear optimization methods are considered and used in classification of two multisource remote sensing and geographic data sets. A nonlinear method which utilizes a neural network gives excellent experimental results. The hybrid statistical/neural method outperforms all other methods in terms of test accuracies in the experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Consensus Learning for Legume Species and Cultivars Classification

In this work we propose an automatic method aimed at classifying five legume species and varieties using leaf venation features. Firstly, we segment the leaf veins and measure several multiscale morphological features on the vein segments and the areoles. Next, we build a hybrid consensus of experts formed by five different automatic classifiers to perform the classification using the extracted...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

Renal Cancer Cell Classification Using Generative Embeddings and Information Theoretic Kernels

In this paper, we propose a hybrid generative/discriminative classification scheme and apply it to the detection of renal cell carcinoma (RCC) on tissue microarray (TMA) images. In particular we use probabilistic latent semantic analysis (pLSA) as a generative model to perform generative embedding onto the free energy score space (FESS). Subsequently, we use information theoretic kernels on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 1997