K-Nearest Neighbors Relevance Annotation Model for Distance Education
نویسندگان
چکیده
With the rapid development of Internet technologies, distance education has become a popular educational mode. In this paper, the authors propose an online image automatic annotation distance education system, which could effectively help children learn interrelations between image content and corresponding keywords. Image automatic annotation is a significant problem in image retrieval and image understanding. The authors propose a K-Nearest Neighbors Relevance model, which combines KNN method with relevance models. The model solves the problems of high computational complexity and annotation results affected by irrelevant training images when joint generation probabilities between visual areas and keywords are calculated. The authors also propose a multi-scale windows method and nearest-neighbors weighting method based on rank-weighting and distance-weighting. Experiments conducted on Corel datasets verify that the K-Nearest Neighbors Relevance model is quite effective.
منابع مشابه
Improving image annotation via ranking-oriented neighbor search and learning-based keyword propagation
Automatic image annotation plays a critical role in modern keyword-based image retrieval systems. For this task, the nearest-neighbor–based scheme works in two phases: first, it finds the most similar neighbors of a new image from the set of labeled images; then, it propagates the keywords associated with the neighbors to the new image. In this article, we propose a novel approach for image ann...
متن کاملA Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors
Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملFlexible Metric Nearest Neighbor Classi ̄cation
The K-nearest-neighbor decision rule assigns an object of unknown class to the plurality class among the K labeled \training" objects that are closest to it. Closeness is usually de ̄ned in terms of a metric distance on the Euclidean space with the input measurement variables as axes. The metric chosen to de ̄ne this distance can strongly e®ect performance. An optimal choice depends on the proble...
متن کاملWeighted Ordered Classes - Nearest Neighbors: A New Framework for Automatic Emotion Recognition from Speech
In this paper we present a new framework for emotion recognition from speech based on a similarity concept called Weighted Ordered Classes-Nearest Neighbors (WOC-NN). Unlike the k-nearest neighbor, an instance-similarity based method; WOC-NN computes similarities between a test instance and a class pattern of each emotion class. An emotion class pattern is a representation of its ranked neighbo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJDET
دوره 9 شماره
صفحات -
تاریخ انتشار 2011