Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity
نویسندگان
چکیده
BACKGROUND Adipose tissue abundance relies partly on the factors that regulate adipogenesis, i.e. proliferation and differentiation of adipocytes. While components of the transcriptional program that initiates adipogenesis is well-known, the importance of microRNAs in adipogenesis is less well studied. We thus set out to investigate whether miRNAs would be actively modulated during adipogenesis and obesity. METHODS Several models exist to study adipogenesis in vitro, of which the cell line 3T3-L1 is the most well known, albeit not the most physiologically appropriate. Thus, as an alternative, we produced EXIQON microarray of brown and white primary murine adipocytes (prior to and following differentiation) to yield global profiles of miRNAs. RESULTS We found 65 miRNAs regulated during in vitro adipogenesis in primary adipocytes. We evaluated the similarity of our responses to those found in non-primary cell models, through literature data-mining. When comparing primary adipocyte profiles, with those of cell lines reported in the literature, we found a high degree of difference in 'adipogenesis' regulated miRNAs suggesting that the model systems may not be accurately representing adipogenesis. The expression of 10 adipogenesis-regulated miRNAs were studied using real-time qPCR and then we selected 5 miRNAs, that showed robust expression, were profiled in subcutaneous adipose tissue obtained from 20 humans with a range of body mass indices (BMI, range = 21-48, and all samples have U133+2 Affymetrix profiles provided). Of the miRNAs tested, mir-21 was robustly expressed in human adipose tissue and positively correlated with BMI (R2 = 0.49, p < 0.001). CONCLUSION In conclusion, we provide a preliminary analysis of miRNAs associated with primary cell in vitro adipogenesis and demonstrate that the inflammation-associated miRNA, mir-21 is up-regulated in subcutaneous adipose tissue in human obesity. Further, we provide a novel transcriptomics database of EXIQON and Affymetrix adipocyte profiles to facilitate data mining.
منابع مشابه
MicroRNAs Induced During Adipogenesis that Accelerate Fat Cell Development Are Downregulated in Obesity
OBJECTIVE We investigated the regulation and involvement of microRNAs (miRNAs) in fat cell development and obesity. RESEARCH DESIGN AND METHODS Using miRNA microarrays, we profiled the expression of >370 miRNAs during adipogenesis of preadipocyte 3T3-L1 cells and adipocytes from leptin deficient ob/ob and diet-induced obese mice. Changes in key miRNAs were validated by RT-PCR. We further asse...
متن کاملmiR-148a is Associated with Obesity and Modulates Adipocyte Differentiation of Mesenchymal Stem Cells through Wnt Signaling
Obesity results from numerous, interacting genetic, behavioral, and physiological factors. Adipogenesis is partially regulated by several adipocyte-selective microRNAs (miRNAs) and transcription factors that regulate proliferation and differentiation of human adipose-derived mesenchymal stem cells (hMSCs-Ad). In this study, we examined the roles of adipocyte-selective miRNAs in the differentiat...
متن کاملLRP1 Receptor Controls Adipogenesis and Is Up-Regulated In Human and Mouse Obese Adipose Tissue
The cell surface low-density lipoprotein receptor-related protein 1, LRP1, plays a major role in lipid metabolism. The question that remains open concerns the function of LRP1 in adipogenesis. Here, we show that LRP1 is highly expressed in murine preadipocytes as well as in primary culture of human adipocytes. Moreover, LRP1 remains abundantly synthesised during mouse and human adipocyte differ...
متن کاملCathepsin-D, a Key Protease in Breast Cancer, Is Up-Regulated in Obese Mouse and Human Adipose Tissue, and Controls Adipogenesis
The aspartic protease cathepsin-D (cath-D) is overexpressed by human epithelial breast cancer cells and is closely correlated with poor prognosis in breast cancer. The adipocyte is one of the most prominent cell types in the tumor-microenvironment of breast cancer, and clinical studies have shown that obesity increases the incidence of breast cancer. Here, we provide the first evidence that cat...
متن کاملmicroRNAs in the Regulation of Adipogenesis and Obesity
Worldwide obesity is a growing health problem, associated with increased risk of chronic disease. Understanding the molecular basis of adipogenesis and fat cell development in obesity is essential to identify new biomarkers and therapeutic targets for the development of anti-obesity drugs. microRNAs (miRNAs) appear to play regulatory roles in many biological processes associated with obesity, i...
متن کامل