Feedback Control of Border Collision Bifurcations in Two-Dimensional Discrete-Time Systems
نویسندگان
چکیده
The feedback control of border collision bifurcations is considered for two-dimensional discrete-time systems. These are bifurcations that can occur when a fixed point of a piecewise smooth system crosses the border between two regions of smooth operation. The goal of the control effort is to modify the bifurcation so that the bifurcated steady state is locally unique and locally attracting. In this way, the system’s local behavior is ensured to remain stable and close to the original operating condition. This is in the same spirit as local bifurcation control results for smooth systems, although the presence of a border complicates the bifurcation picture considerably. Indeed, a full classification of border collision bifurcations isn’t available, so this paper focuses on the more desirable (from a dynamical behavior viewpoint) cases for which the theory is complete. The needed results from the analysis of border collision bifurcations are succinctly summarized. The control design is found to lead to systems of linear inequalities. Any feedback gains that satisfy these inequalities is then guaranteed to solve the bifurcation control problem. The results are applied to an example to illustrate the ideas.
منابع مشابه
Feedback Control of Border Collision Bifurcations in Piecewise Smooth Systems
Feedback controls that stabilize border collision bifurcations are designed for piecewise smooth systems undergoing border collision bifurcations. The paper begins with a summary of the main results on border collision bifurcations, and proceeds to a study of stabilization of these bifurcations for one-dimensional systems using both static and dynamic feedback. The feedback can be applied on on...
متن کاملGrazing-sliding bifurcations, the border collision normal form, and the curse of dimensionality for nonsmooth bifurcation theory
In this paper we show that the border collision normal form of continuous but non-differentiable discrete time maps is affected by a curse of dimensionality: it is impossible to reduce the study of the general case to low dimensions, since in every dimension the bifurcation produces fundamentally different attractors (contrary to the case of smooth systems). In particular we show that the n-dim...
متن کاملGrazing-sliding bifurcations, border collision maps and the curse of dimensionality for piecewise smooth bifurcation theory
Abstract. We show that maps describing border collision bifurcations (continuous but non-differentiable discrete time maps) are subject to a curse of dimensionality: it is impossible to reduce the study of the general case to low dimensions, since in every dimension the bifurcation can produce fundamentally different attractors (contrary to the case of local bifurcations in smooth systems). In ...
متن کاملPole Assignment Of Linear Discrete-Time Periodic Systems In Specified Discs Through State Feedback
The problem of pole assignment, also known as an eigenvalue assignment, in linear discrete-time periodic systems in discs was solved by a novel method which employs elementary similarity operations. The former methods tried to assign the points inside the unit circle while preserving the stability of the discrete time periodic system. Nevertheless, now we can obtain the location of eigenvalues ...
متن کاملBorder collision bifurcations in two-dimensional piecewise smooth maps
Recent investigations on the bifurcations in switching circuits have shown that many atypical bifurcations can occur in piecewise smooth maps that cannot be classified among the generic cases like saddle-node, pitchfork, or Hopf bifurcations occurring in smooth maps. In this paper we first present experimental results to establish the need for the development of a theoretical framework and clas...
متن کامل