Random Matrices with External Source and Multiple Orthogonal Polynomials

نویسندگان

  • P. M. Bleher
  • A. B. J. Kuijlaars
چکیده

defined on n× nHermitian matricesM. The ensemble (1.1) consists of a general unitary invariant part V(M) and an extra termAM,whereA is a fixed n×nHermitianmatrix, the external source or the external field. Due to the external source, the ensemble (1.1) is not unitary invariant. For the special Gaussian case V(x) = (1/2)x, we can write M in (1.1) asM = H+A,whereH is a randommatrix from the GUE ensemble andA is deterministic, hence in this case it reduces to the class of deterministic plus random matrices studied in [5, 6, 7, 8, 9, 10, 18]. Zinn-Justin [20] showed that the eigenvalue correlations of ensemble (1.1) can be expressed in the determinantal form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Christoffel-Darboux kernel for random Hermitian matrices with external source

Bleher and Kuijlaars, and Daems and Kuijlaars showed that the correlation functions of the eigenvalues of a random matrix from unitary ensemble with external source can be expressed in terms of the ChristoffelDarboux kernel for multiple orthogonal polynomials. We obtain a representation of this Christoffel-Darboux kernel in terms of the usual orthogonal polynomials.

متن کامل

X iv : m at h - ph / 0 30 70 55 v 1 2 8 Ju l 2 00 3 Random matrices with external source and multiple orthogonal polynomials

We show that the average characteristic polynomial P n (z) = E[det(zI−M)] of the random Hermitian matrix ensemble Z −1 n exp(−Tr(V (M) − AM))dM is characterized by multiple orthogonality conditions that depend on the eigenvalues of the external source A. For each eigenvalue a j of A, there is a weight and P n has n j orthogonality conditions with respect to this weight, if n j is the multiplici...

متن کامل

Large n Limit of Gaussian Random Matrices with External Source , Part I

We consider the random matrix ensemble with an external source 1 Zn e−nTr( 1 2M −AM)dM defined on n×n Hermitian matrices, where A is a diagonal matrix with only two eigenvalues ±a of equal multiplicity. For the case a > 1, we establish the universal behavior of local eigenvalue correlations in the limit n → ∞, which is known from unitarily invariant random matrix models. Thus, local eigenvalue ...

متن کامل

The Graduate Student Section

Multiple orthogonal polynomials are polynomials of one variable that satisfy orthogonality conditions with respect to several measures. They are a very useful extension of orthogonal polynomials and recently received renewed interest because tools have become available to investigate their asymptotic behavior. They appear in rational approximation, number theory, random matrices, integrable sys...

متن کامل

Meeting on Modern Aspects of Analysis and Scientific Computing

Multiple orthogonal polynomials are polynomials in one variable that satisfy orthogonality conditions with respect to several measures. I will briefly give some general properties of these polynomials (recurrence relation, zeros, etc.). These polynomials have recently appeared in many applications, such as number theory, random matrices, non-intersecting random paths, integrable systems, etc. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003