Using class weighting in inter-class MLLR

نویسندگان

  • Sam-Joo Doh
  • Richard M. Stern
چکیده

A new adaptation method called inter-class MLLR has recently been introduced. Inter-class MLLR utilizes relationships among different transformation functions to achieve more reliable estimates of MLLR parameters across multiple classes, and it produces lower word error rates (WER) than conventional MLLR in circumstances where very little speaker-specific adaptation data are available. This paper describes the application of weights to the neighboring classes to improve the effectiveness with which they are combined with the target class in inter-class MLLR. These weights are obtained from the variance of the estimation error considering the weighted least squares estimation in classical linear regression. In our experiments, the weights provided small improvements in WER for supervised adaptation but almost no improvement in unsupervised adaptation using only a small amount of adaptation data. We also discuss the effect of decreasing the number of neighboring classes as more adaptation data become available, the development of inter-class transformations from the test speaker, and the combination of inter-class MLLR with principal-component MLLR. None of the feasible variations of weighted inter-class MLLR provided significant improvements to recognition accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inter-class MLLR for speaker adaptation

This paper examines the use of interdependencies of parameter classes in transformation-based speaker adaptation algorithms such as maximum likelihood linear regression (MLLR). In transformation-based adaptation, increasing the number of transformation classes can provide more detailed information for adaptation, but at the expense of greater estimation error with small amounts of data. In this...

متن کامل

Architectural Style Classification Using Multinomial Latent Logistic Regression

Architectural style classification differs from standard classification tasks due to the rich inter-class relationships between different styles, such as re-interpretation, revival, and territoriality. In this paper, we adopt Deformable Part-based Models (DPM) to capture the morphological characteristics of basic architectural components and propose Multinomial Latent Logistic Regression (MLLR)...

متن کامل

A novel target-driven MLLR adaptation algorithm with multi-layer structure

This paper presents a novel target-driven MLLR adaptation algorithm with multiply layer structure, which is based on the thorough analysis of MLLR using the generation of regression class trees. The new algorithm is constructed on the targetdriven principal. It generates the regression class dynamically, basing on the outcome of the former MLLR transformation. The regression classes is defined ...

متن کامل

Sampling Bias and Class Imbalance in Maximum-likelihood Logistic Regression

Logistic regression is a widely used statistical method to relate a binary response variable to a set of explanatory variables and maximum likelihood is the most commonly used method for parameter estimation. A maximum-likelihood logistic regression (MLLR) model predicts the probability of the event from binary data defining the event. Currently, MLLR models are used in a myriad of fields inclu...

متن کامل

Anchor and UBM-based multi-class MLLR m-vector system for speaker verification

In this paper, we propose two techniques to extend the recently introduced global Maximum Likelihood Linear Regression (MLLR) transformation (i.e. super-vector) based m-vector system for speaker verification into a multi-class MLLR mvector system in the Universal Background Model (UBM) framework. In the first method, Gaussian mean vectors of the UBM are first grouped into several classes using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000