Adjustable robust solutions of uncertain linear programs

نویسندگان

  • Aharon Ben-Tal
  • A. Goryashko
  • E. Guslitzer
  • Arkadi Nemirovski
چکیده

We consider linear programs with uncertain parameters, lying in some prescribed uncertainty set, where part of the variables must be determined before the realization of the uncertain parameters (”non-adjustable variables”), while the other part are variables that can be chosen after the realization (”adjustable variables”). We extend the Robust Optimization methodology ([1, 3, 4, 5, 6, 9, 13, 14]) to this situation by introducing the Adjustable Robust Counterpart (ARC) associated with an LP of the above structure. Often the ARC is significantly less conservative than the usual Robust Counterpart (RC), however, in most cases the ARC is computationally intractable (NP-hard). This difficulty is addressed by restricting the adjustable variables to be affine functions of the uncertain data. The ensuing Affinely Adjustable Robust Counterpart (AARC) problem is then shown to be, in certain important cases, equivalent to a tractable optimization problem (typically an LP or a Semidefinite problem), and in other cases, having a tight approximation which is tractable. The AARC approach is illustrated by applying it to a multi-stage inventory management problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal and dual robust counterparts of uncertain linear programs: an application to portfolio selection

This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...

متن کامل

Uncertain Linear Programs: Extended Affinely Adjustable Robust Counterparts

In this paper, we introduce the extended affinely adjustable robust counterpart to modeling and solving multistage uncertain linear programs with fixed recourse. Our approach first reparameterizes the primitive uncertainties and then applies the affinely adjustable robust counterpart proposed in the literature, in which recourse decisions are restricted to be linear in terms of the primitive un...

متن کامل

Robust H2 switching gain-scheduled controller design for switched uncertain LPV systems

In this article, a new approach is proposed to design robust switching gain-scheduled dynamic output feedback control for switched uncertain continuous-time linear parameter varying (LPV) systems. The proposed robust switching gain-scheduled controllers are robustly designed so that the stability and H2-gain performance of the switched closed-loop uncertain LPV system can be guaranteed even und...

متن کامل

Robust optimization model for uncertain multiobjective linear programs

In this paper, we consider the multiobjective linear programs where coefficients in the objective function belong to uncertainty sets. We introduce the concept of robust efficient solutions to uncertain multiobjective linear programming problems. By using two scalarization methods, the weighted sum method and the ϵ-constraint method, we obtain that the robust efficient solutions for uncertain m...

متن کامل

Robust Production Management

The problem of production management can often be cast in the form of a linear program with uncertain parameters and risk constraints. Typically, such problems are treated in the framework of multi-stage Stochastic Programming. Recently, a Robust Counterpart (RC) approach has been proposed, in which the decisions are optimized for the worst realizations of problem parameters. However, an applic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2004