Voevodsky’s Motives and Weil Reciprocity
نویسندگان
چکیده
We describe Somekawa’s K-group associated to a finite collection of semi-abelian varieties (or more general sheaves) in terms of the tensor product in Voevodsky’s category of motives. While Somekawa’s definition is based on Weil reciprocity, Voevodsky’s category is based on homotopy invariance. We apply this to explicit descriptions of certain algebraic cycles.
منابع مشابه
Biextensions of 1-motives in Voevodsky’s Category of Motives
Let k be a perfect field. In this paper we prove that biextensions of 1-motives define multilinear morphisms between 1-motives in Voevodsky’s triangulated category DM gm(k, Q) of effective geometrical motives over k with rational coefficients.
متن کاملThe slice filtration and mixed Tate motives
Using the ”slice filtration”, defined by effectivity conditions on Voevodsky’s triangulated motives, we define spectral sequences converging to their motivic cohomology and étale motivic cohomology. These spectral sequences are particularly interesting in the case of mixed Tate motives as their E2-terms then have a simple description. In particular this yields spectral sequences converging to t...
متن کاملGeometric motives and the h-topology
The aim of this paper is to give a detailed proof of a comparison of Voevodsky’s categories of geometric motives with and without transfers, respectively. The latter category is defined by means of h-topology introduced by Voevodsky, a topology essentially given by Zariski coverings, finite coverings and blowups.
متن کاملMotivic interpretation of Milnor K-groups attached to Jacobian varieties
In the paper [Som90] p.105, Somekawa conjectures that his Milnor Kgroup K(k, G1, . . . , Gr) attached to semi-abelian varieties G1,. . . ,Gr over a field k is isomorphic to ExtrMk (Z, G1[−1] ⊗ . . . ⊗ Gr[−1]) where Mk is a certain category of motives over k. The purpose of this note is to give remarks on this conjecture, when we take Mk as Voevodsky’s category of motives DM (k) .
متن کاملTensor Structure on Smooth Motives
Grothendieck first defined the notion of a “motif” as a way of finding a universal cohomology theory for algebraic varieties. Although this program has not been realized, Voevodsky has constructed a triangulated category of geometric motives over a perfect field, which has many of the properties expected of the derived category of the conjectural abelian category of motives. The construction of...
متن کامل