1 0 M ay 2 00 3 May 10 , 2003 Improvement of the Theorem on Local Ergodicity

نویسنده

  • Nándor Simányi
چکیده

We prove here that in the Theorem on Local Ergodicity for Semi-Dispersive Billiards (proved by N. I. Chernov and Ya. G. Sinai in 1987) the recently added condition (by P. Bálint, N. Chernov, D. Szász, and I. P. Tóth, in order to save this fundamental result) on the algebraic character of the smooth boundary components of the configuration space is unnecessary. Having saved the theorem in its original form by using additional ideas in the spirit of the initial proof, the result becomes stronger and it applies to a larger family of models. Primary subject classification: 37D50 Secondary subject classification: 34D05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 3 April 10 , 2003 Improvement of the Theorem on Local Ergodicity

We prove here that in the Theorem on Local Ergodicity for Semi-Dispersive Billiards (proved by N. I. Chernov and Ya. G. Sinai in 1987) the recently added condition on the algebraic character of the smooth boundary components of the configuration space (by P. Bálint, N. Chernov, D. Szász, and I. P. Tóth) is unnecessary. Having saved the theorem in its original form by using additional ideas in t...

متن کامل

2 00 3 April 24 , 2003 Improvement of the Theorem on Local Ergodicity

We prove here that in the Theorem on Local Ergodicity for Semi-Dispersive Billiards (proved by N. I. Chernov and Ya. G. Sinai in 1987) the recently added condition on the algebraic character of the smooth boundary components of the configuration space (by P. Bálint, N. Chernov, D. Szász, and I. P. Tóth) is unnecessary. Having saved the theorem in its original form by using additional ideas in t...

متن کامل

2 00 3 April 25 , 2003 Improvement of the Theorem on Local Ergodicity

We prove here that in the Theorem on Local Ergodicity for Semi-Dispersive Billiards (proved by N. I. Chernov and Ya. G. Sinai in 1987) the recently added condition on the algebraic character of the smooth boundary components of the configuration space (by P. Bálint, N. Chernov, D. Szász, and I. P. Tóth) is unnecessary. Having saved the theorem in its original form by using additional ideas in t...

متن کامل

ar X iv : 0 90 5 . 02 54 v 1 [ m at h . PR ] 3 M ay 2 00 9 Lévy ’ s zero - one law in game - theoretic probability

We prove a game-theoretic version of Lévy’s zero-one law, and deduce several corollaries from it, including Kolmogorov’s zero-one law, the ergodicity of Bernoulli shifts, and a zero-one law for dependent trials. Our secondary goal is to explore the basic definitions of game-theoretic probability theory, with Lévy’s zero-one law serving a useful role.

متن کامل

ar X iv : 0 90 5 . 31 11 v 2 [ m at h . D S ] 3 1 M ay 2 00 9 Relatively finite measure - preserving extensions and lifting multipliers by Rokhlin cocycles

We show that under some natural ergodicity assumptions extensions given by Rokhlin cocycles lift the multiplier property if the associated locally compact group extension has only countably many L ∞-eigenvalues. We make use of some analogs of basic results from the theory of finite-rank modules associated to an extension of measure-preserving systems in the setting of a non-singular base.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003