Initial Boundary Value Problem For Compressible Euler Equations With Damping

نویسندگان

  • Ronghua Pan
  • Kun Zhao
چکیده

We construct global L∞ entropy weak solutions to the initial boundary value problem for the damped compressible Euler equations on bounded domain with physical boundaries. Time asymptotically, the density is conjectured to satisfy the porous medium equation and the momentum obeys to the classical Darcy’s law. Based on entropy principle, we showed that the physical weak solutions converges to steady states exponentially fast in time. We also proved that the same is true for the related initial boundary value problems of porous medium equation and thus justified the validity of Darcy’s law in large time. ∗Email address: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 3D Compressible Euler Equations With Damping in a Bounded Domain

We proved global existence and uniqueness of classical solutions to the initial boundary value problem for the 3D damped compressible Euler equations on bounded domain with slip boundary condition when the initial data is near its equilibrium. Time asymptotically, the density is conjectured to satisfy the porous medium equation and the momentum obeys to the classical Darcy’s law. Based on energ...

متن کامل

Asymptotic Behavior of the 3D Compressible Euler Equations with Nonlinear Damping and Slip Boundary Condition

The asymptotic behavior as well as the global existence of classical solutions to the 3D compressible Euler equations are considered. For polytropic perfect gas P ρ P0ρ , time asymptotically, it has been proved by Pan and Zhao 2009 that linear damping and slip boundary effect make the density satisfying the porous medium equation and the momentum obeying the classical Darcy’s law. In this paper...

متن کامل

M ar 2 00 8 Well - posedness of the IBVP for 2 - D Euler Equations with Damping ∗

In this paper we focus on the initial-boundary value problem of the 2-D isentropic Euler equations with damping. We prove the global-intime existence of classical solution to the initial-boundary value problem by the method of energy estimates. keywords: Euler equation; initial-boundary value problem; well-posedness. MSC(2000): 35A05; 35L45.

متن کامل

On initial-value and self-similar solutions of the compressible Euler equations

We examine numerically the issue of convergence for initial-value solutions and similarity solutions of the compressible Euler equations in two dimensions in the presence of vortex sheets ~slip lines!. We consider the problem of a normal shock wave impacting an inclined density discontinuity in the presence of a solid boundary. Two solution techniques are examined: the first solves the Euler eq...

متن کامل

L1 convergence to the Barenblatt solution for compressible Euler equations with damping

We study the asymptotic behavior of compressible isentropic flow through porous medium when the initial mass is finite. The model system is the compressible Euler equation with frictional damping. As t → ∞, the density is conjectured to obey to the well-known porous medium equation and the momentum is expected to be formulated by Darcy’s law. In this paper, we prove that any L∞ weak entropy sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007