Insight into the mechanism of phosphoenolpyruvate mutase catalysis derived from site-directed mutagenesis studies of active site residues.
نویسندگان
چکیده
PEP mutase catalyzes the conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate in biosynthetic pathways leading to phosphonate secondary metabolites. A recent X-ray structure [Huang, K., Li, Z., Jia, Y., Dunaway-Mariano, D., and Herzberg, O. (1999) Structure (in press)] of the Mytilus edulis enzyme complexed with the Mg(II) cofactor and oxalate inhibitor reveals an alpha/beta-barrel backbone-fold housing an active site in which Mg(II) is bound by the two carboxylate groups of the oxalate ligand and the side chain of D85 and, via bridging water molecules, by the side chains of D58, D85, D87, and E114. The oxalate ligand, in turn, interacts with the side chains of R159, W44, and S46 and the backbone amide NHs of G47 and L48. Modeling studies identified two feasible PEP binding modes: model A in which PEP replaces oxalate with its carboxylate group interacting with R159 and its phosphoryl group positioned close to D58 and Mg(II) shifting slightly from its original position in the crystal structure, and model B in which PEP replaces oxalate with its phosphoryl group interacting with R159 and Mg(II) retaining its original position. Site-directed mutagenesis studies of the key mutase active site residues (R159, D58, D85, D87, and E114) were carried out in order to evaluate the catalytic roles predicted by the two models. The observed retention of low catalytic activity in the mutants R159A, D85A, D87A, and E114A, coupled with the absence of detectable catalytic activity in D58A, was interpreted as evidence for model A in which D58 functions in nucleophilic catalysis (phosphoryl transfer), R159 functions in PEP carboxylate group binding, and the carboxylates of D85, D87 and E114 function in Mg(II) binding. These results also provide evidence against model B in which R159 serves to mediate the phosphoryl transfer. A catalytic motif, which could serve both the phosphoryl transfer and the C-C cleavage enzymes of the PEP mutase superfamily, is proposed.
منابع مشابه
Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
The flavoenzyme UDP-galactopyranose mutase (UGM) is a mediator of cell wall biosynthesis in many pathogenic microorganisms. UGM catalyzes a unique ring contraction reaction that results in the conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UDP-Galf is an essential precursor to the galactofuranose residues found in many different cell wall glycoconjugates. Due to...
متن کاملConformational flexibility of PEP mutase.
Previous work has indicated that PEP mutase catalyzes the rearrangement of phosphoenolpyruvate to phosphonopyruvate by a dissociative mechanism. The crystal structure of the mutase with Mg(II) and sulfopyruvate (a phosphonopyruvate analogue) bound showed that the substrate is anchored to the active site by the Mg(II), and shielded from solvent by a large loop (residues 115-133). Here, the cryst...
متن کاملResidues C123 and D58 of the 2-methylisocitrate lyase (PrpB) enzyme of Salmonella enterica are essential for catalysis.
The prpB gene of Salmonella enterica serovar Typhimurium LT2 encodes a protein with 2-methylisocitrate (2-MIC) lyase activity, which cleaves 2-MIC into pyruvate and succinate during the conversion of propionate to pyruvate via the 2-methylcitric acid cycle. This paper reports the isolation and kinetic characterization of wild-type and five mutant PrpB proteins. Wild-type PrpB protein had a mole...
متن کاملMechanism-Based Studies of the Active Site-Directed Inhibition and Activation of Enzyme Transketolase
Derivatives of phenyl-keto butenoic acids have been reported to be inhibitors of pyruvate decarboxylase, (PDC). The inhibition of transketolase, a thiamine requiring enzyme such as PDF, by meta nitrophenyl derivative of 2-oxo-3-butenoic acid (MNPB) is reported here. These studies indicate that the inhibitor binds to the enzyme at the active site. A two-step inhibition was observed, first th...
متن کاملStructure and function of 2,3-dimethylmalate lyase, a PEP mutase/isocitrate lyase superfamily member.
The Aspergillus niger genome contains four genes that encode proteins exhibiting greater than 30% amino acid sequence identity to the confirmed oxaloacetate acetyl hydrolase (OAH), an enzyme that belongs to the phosphoenolpyruvate mutase/isocitrate lyase superfamily. Previous studies have shown that a mutant A. niger strain lacking the OAH gene does not produce oxalate. To identify the function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 38 43 شماره
صفحات -
تاریخ انتشار 1999