Positive Semidefinite Metric Learning with Boosting

نویسندگان

  • Chunhua Shen
  • Junae Kim
  • Lei Wang
  • Anton van den Hengel
چکیده

The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed BOOSTMETRIC, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. BOOSTMETRIC is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. BOOSTMETRIC thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classification accuracy and running time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Semidefinite Metric Learning Using Boosting-like Algorithms

The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BOOSTMETRIC, for learning a quadratic...

متن کامل

PSDBoost: Matrix-Generation Linear Programming for Positive Semidefinite Matrices Learning

In this work, we consider the problem of learning a positive semidefinite matrix. The critical issue is how to preserve positive semidefiniteness during the course of learning. Our algorithm is mainly inspired by LPBoost [1] and the general greedy convex optimization framework of Zhang [2]. We demonstrate the essence of the algorithm, termed PSDBoost (positive semidefinite Boosting), by focusin...

متن کامل

GeNGA: A Generalization of Natural Gradient Ascent with Positive and Negative Convergence Results

Natural gradient ascent (NGA) is a popular optimization method that uses a positive definite metric tensor. In many applications the metric tensor is only guaranteed to be positive semidefinite (e.g., when using the Fisher information matrix as the metric tensor), in which case NGA is not applicable. In our first contribution, we derive generalized natural gradient ascent (GeNGA), a generalizat...

متن کامل

Boosted Sparse Non-linear Distance Metric Learning

This paper proposes a boosting-based solution addressing metric learning problems for high-dimensional data. Distance measures have been used as natural measures of (dis)similarity and served as the foundation of various learning methods. The efficiency of distance-based learning methods heavily depends on the chosen distance metric. With increasing dimensionality and complexity of data, howeve...

متن کامل

Efficiently Learning a Distance Metric for Large Margin Nearest Neighbor Classification

We concern the problem of learning a Mahalanobis distance metric for improving nearest neighbor classification. Our work is built upon the large margin nearest neighbor (LMNN) classification framework. Due to the semidefiniteness constraint in the optimization problem of LMNN, it is not scalable in terms of the dimensionality of the input data. The original LMNN solver partially alleviates this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009