Gauge symmetry of the N-body problem in the Hamilton–Jacobi approach

نویسندگان

  • Michael Efroimsky
  • Peter Goldreich
چکیده

In most books the Delaunay and Lagrange equations for the orbital elements are derived by the Hamilton-Jacobi method: one begins with the two-body Hamilton equations in spherical coordinates, performs a canonical transformation to the orbital elements, and obtains the Delaunay system. A standard trick is then used to generalise the approach to the N-body case. We re-examine this step and demonstrate that it contains an implicit condition which restricts the dynamics to a 9(N-1)-dimensional submanifold of the 12(N-1)-dimensional space spanned by the elements and their time derivatives. The tacit condition is equivalent to the constraint that Lagrange imposed ”by hand” to remove the excessive freedom, when he was deriving his system of equations by variation of parameters. It is the condition of the orbital elements being osculating, i.e., of the instantaneous ellipse (or hyperbola) being always tangential to the physical velocity. Imposure of any supplementary condition different from the Lagrange constraint (but compatible with the equations of motion) is legitimate and will not alter the physical trajectory or velocity (though will alter the mathematical form of the planetary equations). Also at the Institute for Advanced Study, Princeton NJ 08540 USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving linear and nonlinear optimal control problem using modified adomian decomposition method

First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An application in optimal control is presented. The solution in different order of approximations and different methods of approximat...

متن کامل

Metafluid dynamics and Hamilton-Jacobi formalism

Metafluid dynamics was investigated within Hamilton-Jacobi formalism and the existence of the hidden gauge symmetry was analyzed. The obtained results are in agreement with those of Faddeev-Jackiw approach. PACS:11.10.Ef,03.40.Gc

متن کامل

Gauge Freedom in the N - body Problem of Celestial

We summarise research reported in (Efroimsky 2002, 2003; Efroimsky & Goldreich 2003a,b) and develop its application to planetary equations in non-inertial frames. Whenever a standard system of six planetary equations (in the Lagrange, Delaunay, or other form) is employed, the trajectory resides on a 9(N-1)-dimensional submanifold of the 12(N-1)-dimensional space spanned by the orbital elements ...

متن کامل

Gauge freedom in the N-body problem of celestial mechanics

The goal of this paper is to demonstrate how the internal symmetry of the N-body celestial-mechanics problem can be exploited in orbit calculation. We start with summarising research reported in (Efroimsky 2002, 2003; Newman & Efroimsky 2003; Efroimsky & Goldreich 2003) and develop its application to planetary equations in non-inertial frames. This class of problems is treated by the variationo...

متن کامل

0 v 1 7 J ul 2 00 3 Submitted to ” Astronomy and Astrophysics ” Gauge Freedom in the N - body problem of Celestial Mechanics

We summarise research reported in (Efroimsky 2002, 2003; Efroimsky & Goldreich 2003a,b) and develop its application to planetary equations in non-inertial frames. Whenever a standard system of six planetary equations (in the Lagrange, Delaunay, or other form) is employed, the trajectory resides on a 9(N-1)-dimensional submanifold of the 12(N-1)-dimensional space spanned by the orbital elements ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003