Opposing ISWI- and CHD-class chromatin remodeling activities orchestrate heterochromatic DNA repair
نویسندگان
چکیده
Heterochromatin is a barrier to DNA repair that correlates strongly with elevated somatic mutation in cancer. CHD class II nucleosome remodeling activity (specifically CHD3.1) retained by KAP-1 increases heterochromatin compaction and impedes DNA double-strand break (DSB) repair requiring Artemis. This obstruction is alleviated by chromatin relaxation via ATM-dependent KAP-1S824 phosphorylation (pKAP-1) and CHD3.1 dispersal from heterochromatic DSBs; however, how heterochromatin compaction is actually adjusted after CHD3.1 dispersal is unknown. In this paper, we demonstrate that Artemis-dependent DSB repair in heterochromatin requires ISWI (imitation switch)-class ACF1-SNF2H nucleosome remodeling. Compacted chromatin generated by CHD3.1 after DNA replication necessitates ACF1-SNF2H-mediated relaxation for DSB repair. ACF1-SNF2H requires RNF20 to bind heterochromatic DSBs, underlies RNF20-mediated chromatin relaxation, and functions downstream of pKAP-1-mediated CHD3.1 dispersal to enable DSB repair. CHD3.1 and ACF1-SNF2H display counteractive activities but similar histone affinities (via the plant homeodomains of CHD3.1 and ACF1), which we suggest necessitates a two-step dispersal and recruitment system regulating these opposing chromatin remodeling activities during DSB repair.
منابع مشابه
ISWI chromatin remodeling complexes in the DNA damage response
Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family ...
متن کاملNuMA promotes homologous recombination repair by regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks
Chromatin remodeling factors play an active role in the DNA damage response by shaping chromatin to facilitate the repair process. The spatiotemporal regulation of these factors is key to their function, yet poorly understood. We report that the structural nuclear protein NuMA accumulates at sites of DNA damage in a poly[ADP-ribose]ylation-dependent manner and functionally interacts with the IS...
متن کاملISWI and CHD chromatin remodelers bind to promoters but act in gene bodies
Background ATP-dependent nucleosome remodelers influence genetic processes by altering nucleosome occupancy, positioning, and composition. In vitro, yeast imitation switch (ISWI) and chromodomain helicase DNA-binding (CHD) remodelers bind ~30-85 bp of extranucleosomal DNA [1-3]. However, in vivo, ISWI and CHD remodelers act within gene bodies [4], which contain regularly spaced nucleosomes sepa...
متن کاملInsights into how chromatin remodeling factors find their target in the nucleus.
E nzymes that use energy gained by ATP-hydrolysis to alter nucleosomes, the building blocks of chromatin, are involved in all processes occurring on DNA (1, 2). These ATP-dependent chromatin remodeling factors regulate access to DNA either by moving nucleosomes away from a transcription factor binding site or into such a site, occluding further access (1, 2). All known ATP-dependent nucleosome ...
متن کاملHuman ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites.
Chromatin remodeling complexes can translocate nucleosomes along the DNA in an ATP-dependent manner. Here, we studied autofluorescent protein constructs of the human ISWI family members Snf2H, Snf2L, the catalytically inactive Snf2L+13 splice variant, and the accessory Acf1 subunit in living human and mouse cells by fluorescence microscopy/spectroscopy. Except for Snf2L, which was not detected ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 207 شماره
صفحات -
تاریخ انتشار 2014