Changing properties of GABA(A) receptor-mediated signaling during early neocortical development.
نویسندگان
چکیده
Evidence from several brain regions suggests gamma-aminobutyric acid (GABA) can exert a trophic influence during development, expanding the role of this amino acid beyond its function as an inhibitory neurotransmitter. Proliferating precursor cells in the neocortical ventricular zone (VZ) express functional GABA(A) receptors as do immature postmigratory neurons in the developing cortical plate (CP); however, GABA(A) receptor properties in these distinct cell populations have not been compared. Using electrophysiological techniques in embryonic and early postnatal neocortex, we find that GABA(A) receptors expressed by VZ cells have a higher apparent affinity for GABA and are relatively insensitive to receptor desensitization compared with neurons in the CP. GABA-induced current magnitude increases with maturation with the smallest responses found in recordings from precursor cells in the VZ. No evidence was found that GABA(A) receptors on VZ cells are activated synaptically, consistent with previous data suggesting that these receptors are activated in a paracrine fashion by nonsynaptically released ligand. After neurons are born and migrate to the CP, they begin to demonstrate spontaneous synaptic activity, the majority of which is GABA(A) mediated. These spontaneous GABA(A) postsynaptic currents (sPSCs) first were detected at embryonic day 18 (E18). At birth, approximately 50% of recordings from cortical neurons demonstrated GABA(A)-mediated sPSCs, and this value increased with age. GABA(A)-mediated sPSCs were action potential dependent and arose from local GABAergic interneurons. GABA application could evoke action potential-dependent PSCs in neonatal cortical neurons, suggesting that during the first few postnatal days, GABA can act as an excitatory neurotransmitter. Finally, N-methyl-D-aspartate (NMDA)- but not non-NMDA-mediated sPSCs were also present in early postnatal neurons. These events were not observed in cells voltage clamped at negative holding potentials (-60 to -70 mV) but were evident when the holding potential was set at positive values (+30 to +60 mV). Together these results provide evidence for the early maturation of GABAergic communication in the neocortex and a functional change in GABA(A)-receptor properties between precursor cells and early postmitotic neurons. The change in GABA(A)-receptor properties may reflect the shift from paracrine to synaptic receptor activation.
منابع مشابه
Recent Advances in T Cell Signaling in Aging
The immune system of mammalian organisms undergoes alterations that may account for an increased susceptibility to certain infections, autoimmune diseases, or malignancies. Well characterized are age related defect in T cell functions and cell mediated immunity. Although it is well established that the functional properties of T cells decrease with age, its biochemical and molecular nature is...
متن کاملCl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1.
GABA is the principal inhibitory neurotransmitter in the mature brain, but during early postnatal development the elevated [Cl(-)](i) in immature neocortical neurones causes GABA(A) receptor activation to be depolarizing. The molecular mechanisms underlying this intracellular Cl(-) accumulation remain controversial. Therefore, the GABA reversal potential (E(GABA)) or [Cl(-)](i) in early postnat...
متن کاملGABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl- channels.
GABA emerges as a trophic signal during rat neocortical development in which it modulates proliferation of neuronal progenitors in the ventricular/subventricular zone (VZ/SVZ) and mediates radial migration of neurons from the VZ/SVZ to the cortical plate/subplate (CP/SP) region. In this study we investigated the role of GABA in the earliest phases of neuronal differentiation in the CP/SP. GABAe...
متن کاملExcitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging.
Gramicidin perforated-patch-clamp recordings in brain slices were used to obtain an accurate assessment of the developmental change in the GABAA receptor reversal potential (EGABAA) in embryonic and early postnatal rat neocortical cells including neuroepithelial precursor cells, cortical plate neurons, and postnatal neocortical neurons. Our results demonstrate that there is a progressive negati...
متن کاملP-24: Opioid and Progesterone Signaling Is Obligatoryfor Early Human Embryogenesis
Background: The growth factors that drive the division and differentiation of stem cells during early human embryogenesis are unknown. The secretion of endorphins, progesterone (P(4)), human chorionic gonadotropin, 17beta-estradiol, and gonadotropin-releasing hormone by trophoblasts that lie adjacent to the embryoblast in the blastocyst suggests that these pregnancy-associated factors may direc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 82 2 شماره
صفحات -
تاریخ انتشار 1999