An extension to possibilistic fuzzy cluster analysis
نویسندگان
چکیده
We explore an approach to possibilistic fuzzy clustering that avoids a severe drawback of the conventional approach, namely that the objective function is truly minimized only if all cluster centers are identical. Our approach is based on the idea that this undesired property can be avoided if we introduce a mutual repulsion of the clusters, so that they are forced away from each other. We develop this approach for the possibilistic fuzzy c-means algorithm and the possibilistic Gustafson–Kessel algorithm. In our experiments we found that in this way we can combine the partitioning property of the probabilistic fuzzy c-means algorithm with the advantages of a possibilistic approach w.r.t. the interpretation of the membership degrees.
منابع مشابه
Classification of Words: Using PFCM Clustering
-There are various clustering models introduced for unsupervised learning. PFCM or the possibilistic c-means model was proposed in 2005. PFCM produces mainly three values: the typicality values, membership values and the centres of the clusters. It is a hybrid model of PCM and FCM. We propose an extension to PFCM so that it can be used to cluster the text files. Keywords— possibilistic model, f...
متن کاملA Method to Enhance the 'Possibilistic C-Means with Repulsion' Algorithm based on Cluster Validity Index
In this paper, we examine the performance of fuzzy clustering algorithms as the major technique in pattern recognition. Both possibilistic and probabilistic approaches are explored. While the Possibilistic C-Means (PCM) has been shown to be advantageous over Fuzzy C-Means (FCM) in noisy environments, it has been reported that the PCM has an undesirable tendency to produce coincident clusters. R...
متن کاملRisk management using evolving possibilistic fuzzy modeling
Market risk exposure plays a key role for financial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incur when the price of the portfolio’s assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of financial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estima...
متن کاملAn evolving possibilistic fuzzy modeling approach for Value-at-Risk estimation
Market risk exposure plays a key role for financial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incur when the price of the portfolio’s assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of financial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estima...
متن کاملTransactions on Engineering and Sciences, Vol. I, August 2013
This paper presents a latest survey of different technologies using fuzzy clustering algorithms. Clustering approach is widely used in biomedical field like image segmentation. A different methods are used for medical image segmentation like Improved Fuzzy C Means(IFCM), Possibilistic C Means(PCM),Fuzzy Possibilistic C Means(FPCM), Modified Fuzzy Possibilistic C Means(MFPCM) and Possibilistic F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 147 شماره
صفحات -
تاریخ انتشار 2004