An extension to possibilistic fuzzy cluster analysis

نویسندگان

  • Heiko Timm
  • Christian Borgelt
  • Christian Döring
  • Rudolf Kruse
چکیده

We explore an approach to possibilistic fuzzy clustering that avoids a severe drawback of the conventional approach, namely that the objective function is truly minimized only if all cluster centers are identical. Our approach is based on the idea that this undesired property can be avoided if we introduce a mutual repulsion of the clusters, so that they are forced away from each other. We develop this approach for the possibilistic fuzzy c-means algorithm and the possibilistic Gustafson–Kessel algorithm. In our experiments we found that in this way we can combine the partitioning property of the probabilistic fuzzy c-means algorithm with the advantages of a possibilistic approach w.r.t. the interpretation of the membership degrees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Words: Using PFCM Clustering

-There are various clustering models introduced for unsupervised learning. PFCM or the possibilistic c-means model was proposed in 2005. PFCM produces mainly three values: the typicality values, membership values and the centres of the clusters. It is a hybrid model of PCM and FCM. We propose an extension to PFCM so that it can be used to cluster the text files. Keywords— possibilistic model, f...

متن کامل

A Method to Enhance the 'Possibilistic C-Means with Repulsion' Algorithm based on Cluster Validity Index

In this paper, we examine the performance of fuzzy clustering algorithms as the major technique in pattern recognition. Both possibilistic and probabilistic approaches are explored. While the Possibilistic C-Means (PCM) has been shown to be advantageous over Fuzzy C-Means (FCM) in noisy environments, it has been reported that the PCM has an undesirable tendency to produce coincident clusters. R...

متن کامل

Risk management using evolving possibilistic fuzzy modeling

Market risk exposure plays a key role for financial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incur when the price of the portfolio’s assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of financial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estima...

متن کامل

An evolving possibilistic fuzzy modeling approach for Value-at-Risk estimation

Market risk exposure plays a key role for financial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incur when the price of the portfolio’s assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of financial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estima...

متن کامل

Transactions on Engineering and Sciences, Vol. I, August 2013

This paper presents a latest survey of different technologies using fuzzy clustering algorithms. Clustering approach is widely used in biomedical field like image segmentation. A different methods are used for medical image segmentation like Improved Fuzzy C Means(IFCM), Possibilistic C Means(PCM),Fuzzy Possibilistic C Means(FPCM), Modified Fuzzy Possibilistic C Means(MFPCM) and Possibilistic F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 147  شماره 

صفحات  -

تاریخ انتشار 2004