A New Proof of Szabó’s Theorem on the Riemann-metrizability of Berwald Manifolds
ثبت نشده
چکیده
The starting point of the famous structure theorems on Berwald spaces due to Z.I. Szabó [4] is an observation on the Riemann-metrizability of positive definite Berwald manifolds. It states that there always exists a Riemannian metric on the underlying manifold such that its Levi-Civita connection is just the canonical connection of the Berwald manifold. In this paper we present a new elementary proof of this theorem. After constructing a Riemannian metric by the help of integration of the canonical Riemann-Finsler metric on the indicatrix hypersurface it is proved that in case of Berwald manifolds the canonical connection and the Levi-Civita connection coincide.
منابع مشابه
On the geometry of Randers manifolds
Randers manifolds are studied in the framework of the pullback bundle formalism, with the aid of intrinsic methods only. After checking a sufficient condition for a Randers manifold to be a Finsler manifold, we provide a systematic description of the Riemann-Finsler metric, the canonical spray, the Barthel endomorphism, the Berwald connection, the Cartan tensors and the Cartan vector field in t...
متن کاملStrictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملBerwald metrics constructed by Chevalley’s polynomials
Berwald metrics are particular Finsler metrics which still have linear Berwald connections. Their complete classification is established in an earlier work, [Sz1], of this author. The main tools in these classification are the Simons-Berger holonomy theorem and the Weyl-group theory. It turnes out that any Berwald metric is a perturbed-Cartesian product of Riemannian, Minkowski, and such non-Ri...
متن کاملAnother proof of Banaschewski's surjection theorem
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...
متن کامل