A New Proof of Szabó’s Theorem on the Riemann-metrizability of Berwald Manifolds

ثبت نشده
چکیده

The starting point of the famous structure theorems on Berwald spaces due to Z.I. Szabó [4] is an observation on the Riemann-metrizability of positive definite Berwald manifolds. It states that there always exists a Riemannian metric on the underlying manifold such that its Levi-Civita connection is just the canonical connection of the Berwald manifold. In this paper we present a new elementary proof of this theorem. After constructing a Riemannian metric by the help of integration of the canonical Riemann-Finsler metric on the indicatrix hypersurface it is proved that in case of Berwald manifolds the canonical connection and the Levi-Civita connection coincide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the geometry of Randers manifolds

Randers manifolds are studied in the framework of the pullback bundle formalism, with the aid of intrinsic methods only. After checking a sufficient condition for a Randers manifold to be a Finsler manifold, we provide a systematic description of the Riemann-Finsler metric, the canonical spray, the Barthel endomorphism, the Berwald connection, the Cartan tensors and the Cartan vector field in t...

متن کامل

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

Berwald metrics constructed by Chevalley’s polynomials

Berwald metrics are particular Finsler metrics which still have linear Berwald connections. Their complete classification is established in an earlier work, [Sz1], of this author. The main tools in these classification are the Simons-Berger holonomy theorem and the Weyl-group theory. It turnes out that any Berwald metric is a perturbed-Cartesian product of Riemannian, Minkowski, and such non-Ri...

متن کامل

Another proof of Banaschewski's surjection theorem

We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005