The Hahn-banach Separation Theorem and Other Separation Results
نویسنده
چکیده
This paper will introduce and prove several theorems involving the separation of convex sets by hyperplanes, along with other interesting related results. It will begin with some basic separation results in Rn, such as the Hyperplane Separation Theorem of Hermann Minkowski, and then it will focus on and prove the extension of this theorem into normed vector spaces, known as the Hahn-Banach Separation Theorem. This paper will also prove some supporting results as stepping stones along the way, such as the Supporting Hyperplane Theorem and the analytic Hahn-Banach Theorem.
منابع مشابه
A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کاملHahn-Banach extension theorems for multifunctions revisited
Several generalizations of the Hahn–Banach extension theorem to K-convex multifunctions were stated recently in the literature. In this note we provide an easy direct proof for the multifunction version of the Hahn–Banach–Kantorovich theorem and show that in a quite general situation it can be obtained from existing results. Then we derive the Yang extension theorem using a similar proof as wel...
متن کاملHahn-Banach Separation Theorem for Max-Plus Semimodules
We introduce max-plus analogues of basic Euclidian geometry notions: scalar product is replaced by a scalar division, and the associated distance is essentially Hilbert’s projective distance. We introduce an orthogonal projection and prove a Hahn-Banach type theorem: a point can be separated from a semimodule by a hyperplane orthogonal to the direction of projection. We use these results to sep...
متن کاملA nonconvex separation property in Banach spaces
We establish, in innnite dimensional Banach space, a nonconvex separation property for general closed sets that is an extension of Hahn-Banach separation theorem. We provide some consequences in optimization, in particular the existence of singular multipliers and show the relation of our principle with the extremal principle of Mordukhovich.
متن کاملSeparation and Weak König's Lemma
We continue the work of [14, 3, 1, 19, 16, 4, 12, 11, 20] investigating the strength of set existence axioms needed for separable Banach space theory. We show that the separation theorem for open convex sets is equivalent to WKL0 over RCA0. We show that the separation theorem for separably closed convex sets is equivalent to ACA0 over RCA0. Our strategy for proving these geometrical Hahn–Banach...
متن کامل