Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2.
نویسندگان
چکیده
In addition to increased DNA-strand exchange, a cytogenetic feature of cells lacking the RecQ-like BLM helicase is a tendency for telomeres to associate. We also report additional cellular and biochemical evidence for the role of BLM in telomere maintenance. BLM co-localizes and complexes with the telomere repeat protein TRF2 in cells that employ the recombination-mediated mechanism of telomere lengthening known as ALT (alternative lengthening of telomeres). BLM co-localizes with TRF2 in foci actively synthesizing DNA during late S and G2/M; co-localization increases in late S and G2/M when ALT is thought to occur. Additionally, TRF1 and TRF2 interact directly with BLM and regulate BLM unwinding activity in vitro. Whereas TRF2 stimulates BLM unwinding of telomeric and non-telomeric substrates, TRF1 inhibits BLM unwinding of telomeric substrates only. Finally, TRF2 stimulates BLM unwinding with equimolar concentrations of TRF1, but not when TRF1 is added in molar excess. These data suggest a function for BLM in recombination-mediated telomere lengthening and support a model for the coordinated regulation of BLM activity at telomeres by TRF1 and TRF2.
منابع مشابه
The effect of rehabilitation training on TRF1 and TRF2 in myocardial infarction patients
Introduction: Telomeres are repetitive sequences of TTAGGG section that find at two ends of eukaryotic chromosomes and they shield chromosome ends. Telomere shortening in patients with myocardial infarction has been reported. Shelterin complex's role is essential in telomere length regulation. Telomeric repeat binding factors 1 and 2 (TRF1 and TRF2) are the most important sheltrein complex pr...
متن کاملThe Effect of High and Low-Intensity Interval Training on TRF1 and TRF2 Gene Expression in Slow and Fast-Twitch Skeletal Muscles of C57BL/6 Mice: An Experimental Study
Background and Objectives: The process of chronic diseases and aging is associated with reduced telomere length. The aim of this study was to investigate the effect of high-intensity interval training (HIIT) and low-intensity interval training (LIIT) on telomere repeat binding factor 1 and 2 (TRF1 and TRF2) in Soleus (SOL) muscle as a slow-twitch (ST) and Extensor Digitorum Longus (EDL) muscle ...
متن کاملSLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates
SLX4 assembles a toolkit of endonucleases SLX1, MUS81 and XPF, which is recruited to telomeres via direct interaction of SLX4 with TRF2. Telomeres present an inherent obstacle for DNA replication and repair due to their high propensity to form branched DNA intermediates. Here we provide novel insight into the mechanism and regulation of the SLX4 complex in telomere preservation. SLX4 associates...
متن کاملA Dynamic Molecular Link between the Telomere Length Regulator TRF1 and the Chromosome End Protector TRF2
BACKGROUND Human telomeres are coated by the telomere repeat binding proteins TRF1 and TRF2, which are believed to function independently to regulate telomere length and protect chromosome ends, respectively. RESULTS Here, we show that TRF1 and TRF2 are linked via TIN2, a previously identified TRF1-interacting protein, and its novel binding partner TINT1. TINT1 localized to telomeres via TIN2...
متن کاملOxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2
The ends of linear chromosomes are capped by protein-DNA complexes termed telomeres. Telomere repeat binding factors 1 and 2 (TRF1 and TRF2) bind specifically to duplex telomeric DNA and are critical components of functional telomeres. Consequences of telomere dysfunction include genomic instability, cellular apoptosis or senescence and organismal aging. Mild oxidative stress induces increased ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 13 17 شماره
صفحات -
تاریخ انتشار 2004