Parallel Computing of Two Numerical Quadratures for an Integral Formulation of Transient Radiation Transport
نویسنده
چکیده
Parallel computing of the transient radiative transfer process in the three-dimensional homogeneous and nonhomogeneous participating media is studied with an integral equation model. The model can be used for analyzing the ultra-short light pulse propagation within the highly scattering media. Two numerical quadratures are used: the discrete rectangular volume (DRV) method and YIX method. The parallel versions of both methods are developed for onedimensional and three-dimensional geometries, respectively. Both quadratures achieve good speedup in parallel performance. Because the integral equation model uses very small amount of memory, the parallel computing can take advantage of having each compute node or processor store the full spatial domain information without using the typical domain decomposition parallelism, which will be necessary in other solution methods, e.g., discrete ordinates and finite volume methods, for large scale simulations. The parallel computation is conducted by assigning different portion of the quadrature to different compute node. In DRV method, a variation of the spatial domain decomposition is used. In the case of YIX scheme, the angular quadrature is divided up according to the number of compute nodes, instead of the spatial domain being divided. This parallel scheme minimizes the communications overhead. The only communication needed is at the end of each time step when each node shares the partial integrated result of the current time step with all other compute nodes. The angular quadrature decomposition approach leads to very good parallel efficiency. Two new discrete ordinate sets are used in the YIX angular quadrature and their parallel performances are discussed. One of the 1 discrete ordinates sets, called spherical ring set, is also suitable for use in the conventional discrete ordinates method.
منابع مشابه
Parallel Higher-order Boundary Integral Electrostatics Computation on Molecular Surfaces with Curved Triangulation
In this paper,wepresent a parallel higher-order boundary integralmethod to solve the linear Poisson–Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace linear solver such as GMRES. The molecular surfaces are first discretized with flat triangles and then converted to curved triangleswith the assistance of n...
متن کاملExperimental and Numerical Studies of Short Pulse Propagation in Model Systems
In this paper experimental and numerical studies of shortpulsed lasers propagation through scattering and absorbing media are investigated. Experimental results of a 60 ps pulse laser transmission in tissue phantoms are presented and compared with Monte Carlo simulation. Good agreement between the Monte Carlo simulation and experimental measurement is found. Three models are developed for the s...
متن کاملTRANSPORT ROUTE PLANNING MODELS BASED ON FUZZY APPROACH
Transport route planning is one of the most important and frequent activities in supply chain management. The design of information systems for route planning in real contexts faces two relevant challenges: the complexity of the planning and the lack of complete and precise information. The purpose of this paper is to nd methods for the development of transport route planning in uncertainty dec...
متن کاملFast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کاملTransient MHD Convective Flow of Fractional Nanofluid between Vertical Plates
Effects of the uniform transverse magnetic field on the transient free convective flows of a nanofluid with generalized thermal transport between two vertical parallel plates have been analyzed. The fluid temperature is described by a time-fractional differential equation with Caputo derivatives. Closed form of the temperature field is obtained by using the Laplace transform and fractional deri...
متن کامل