Multifractal Nature of Two Dimensional Simple Random Walk Paths
نویسنده
چکیده
The multifractal spectrum of discrete harmonic measure of a two dimensional simple random walk path is considered. It is shown that the spectrum is the same as for Brownian motion, is nontrivial, and can be given in terms of a quantity known as the intersection exponent.
منابع مشابه
Geometric and Fractal Properties of Brownian Motion and Random Walk Paths in Two and Three Dimensions
There is a close relationship between critical exponents for proa-bilities of events and fractal properties of paths of Brownian motion and random walk in two and three dimensions. Cone points, cut points, frontier points, and pioneer points for Brownian motion are examples of sets whose Hausdorr dimension can be given in terms of corresponding exponents. In the latter three cases, the exponent...
متن کاملBrownian Intersections, Cover Times and Thick Points via Trees
There is a close connection between intersections of Brownian motion paths and percolation on trees. Recently, ideas from probability on trees were an important component of the multifractal analysis of Brownian occupation measure, in joint work with A. Dembo, J. Rosen and O. Zeitouni. As a consequence, we proved two conjectures about simple random walk in two dimensions: The first, due to Erdő...
متن کاملConvergence of the Structure Function of a Multifractal Random Walk in a Mixed Asymptotic Setting
Abstract. Some asymptotic properties of a Brownian motion in multifractal time, also called multifractal random walk, are established. We show the almost sure and L convergence of its structure function. This is an issue directly connected to the scale invariance and multifractal property of the sample paths. We place ourselves in a mixed asymptotic setting where both the observation length and...
متن کاملSmooth paths on three-dimensional lattice.
A particular class of random walks with a spin factor on a three dimensional cubic lattice is studied. This three dimensional random walk model is a simple generalization of random walk for the two dimensional Ising model. All critical diffusion constants and associated critical exponents are calculated. Continuum field theories such as Klein-Gordon, Dirac and massive Chern-Simons theories are ...
متن کاملScale-free avalanches in the multifractal random walk
Avalanches, or Avalanche-like, events are often observed in the dynamical behaviour of many complex systems which span from solar flaring to the Earth’s crust dynamics and from traffic flows to financial markets. Self-organized criticality (SOC) is one of the most popular theories able to explain this intermittent charge/discharge behaviour. Despite a large amount of theoretical work, empirical...
متن کامل