Synonymous Genetic Variation in Natural Isolates of Escherichia coli Does Not Predict Where Synonymous Substitutions Occur in a Long-Term Experiment
نویسندگان
چکیده
Synonymous genetic differences vary by more than 20-fold among genes in natural isolates of Escherichia coli. One hypothesis to explain this heterogeneity is that genes with high levels of synonymous variation mutate at higher rates than genes with low synonymous variation. If so, then one would expect to observe similar mutational patterns in evolution experiments. In fact, however, the pattern of synonymous substitutions in a long-term evolution experiment with E. coli does not support this hypothesis. In particular, the extent of synonymous variation across genes in that experiment does not reflect the variation observed in natural isolates of E. coli. Instead, gene length alone predicts with high accuracy the prevalence of synonymous changes in the experimental populations. We hypothesize that patterns of synonymous variation in natural E. coli populations are instead caused by differences across genomic regions in their effective population size that, in turn, reflect different histories of recombination, horizontal gene transfer, selection, and population structure.
منابع مشابه
Phylogenetic analysis and genetic variation of Tomato yellow leaf curl virus based on the V1 gene in Iraq
Tomato yellow leaf curl virus (TYLCV) is a supreme pathogen in tropical and subtropical areas. During 2014-2015, a total of 393 tomato samples showing Tomato yellow leaf curl disease (TYLCD) symptoms were collected from six different provinces of Iraq. In serological assays, 55 out of 393 samples (14%) reacted positively with TYLCV-specific antibodies .The presence of TYLCV was verified in 21 (...
متن کاملMutation Rate Inferred From Synonymous Substitutions in a Long-Term Evolution Experiment With Escherichia coli
The quantification of spontaneous mutation rates is crucial for a mechanistic understanding of the evolutionary process. In bacteria, traditional estimates using experimental or comparative genetic methods are prone to statistical uncertainty and consequently estimates vary by over one order of magnitude. With the advent of next-generation sequencing, more accurate estimates are now possible. W...
متن کاملPolymorphism of genes encoding SOS polymerases in natural populations of Escherichia coli.
High fidelity replicative DNA polymerases can be blocked during DNA replication by various base damages, which represents a potentially lethal event. Escherichia coli possesses three DNA polymerases, PolII, PolIV and PolV, that can continue replication over such lesions in template DNA, thus allowing for cell survival. Genes coding for these enzymes, polB, dinB, and umuCD respectively, belong t...
متن کاملPhylogenetic Analysis of Some Luffa Genotypes Based on the sequence of intergenic region of trnH-psbA
Luffa (Luffa cylindrica) is a plant from the Cucurbitaceae family that grows mostly in tropical and subtropical regions, as well as in most regions of Iran. In this research, the genetic diversity of nine native and non-native genotypes of L. cylindrica was investigated through the evaluation of the chloroplast trnH-psbA intergenic region (IGS). After sampling the young leaves, DNA extraction w...
متن کاملGenetic variation among Escherichia coli isolates from human and calves by using RAPD PCR
Background: Various strains of Escherichia coli (E. coli) are known as major causes of intestinal and extraintestinal infections in humans and various animal species. Molecular methods are important for the identification of bacterial isolates and nucleotide sequence variations, as well as information on tracking bacterial agents related to the outbreaks, the frequency of the bacterial genetic ...
متن کامل