SuperPred: update on drug classification and target prediction

نویسندگان

  • Janette Nickel
  • Björn-Oliver Gohlke
  • Jevgeni Erehman
  • Priyanka Banerjee
  • Wen Wei Rong
  • Andrean Goede
  • Mathias Dunkel
  • Robert Preissner
چکیده

The SuperPred web server connects chemical similarity of drug-like compounds with molecular targets and the therapeutic approach based on the similar property principle. Since the first release of this server, the number of known compound-target interactions has increased from 7000 to 665,000, which allows not only a better prediction quality but also the estimation of a confidence. Apart from the addition of quantitative binding data and the statistical consideration of the similarity distribution in all drug classes, new approaches were implemented to improve the target prediction. The 3D similarity as well as the occurrence of fragments and the concordance of physico-chemical properties is also taken into account. In addition, the effect of different fingerprints on the prediction was examined. The retrospective prediction of a drug class (ATC code of the WHO) allows the evaluation of methods and descriptors for a well-characterized set of approved drugs. The prediction is improved by 7.5% to a total accuracy of 75.1%. For query compounds with sufficient structural similarity, the web server allows prognoses about the medical indication area of novel compounds and to find new leads for known targets. SuperPred is publicly available without registration at: http://prediction.charite.de.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SuperPred: drug classification and target prediction

UNLABELLED The drug classification scheme of the World Health Organization (WHO) [Anatomical Therapeutic Chemical (ATC)-code] connects chemical classification and therapeutic approach. It is generally accepted that compounds with similar physicochemical properties exhibit similar biological activity. If this hypothesis holds true for drugs, then the ATC-code, the putative medical indication are...

متن کامل

O-3: Drug Repositioning by Merging Gene Expression Data Analysis and Cheminformatics Target Prediction Approaches

The transcriptional responses of drug treatments combined with a protein target prediction algorithm was utilised to associate compounds to biological genomic space. This enabled us to predict efficacy of compounds in cMap and LINCS against 181 databases of diseases extracted from GEO. 18/30 of top drugs predicted for leukemia (e.g. Leflunomide and Etoposide) and breast cancer (e.g. Tamoxifen a...

متن کامل

Supervised prediction of drug-target interactions by ensemble learning

Drug-target interaction (DTI) provides novel insights about the genomic drug discovery. The wet experiments of identifying DTIs are time-consuming and costly. Recently, the increase of available data provides the opportunity to the development of computational methods. Although many computational methods have been proposed (such as classification-based methods, graph-based methods and network-b...

متن کامل

Classification and its application to drug-target interaction prediction

Classification is one of the most popular and widely used supervised learning tasks, which categorizes objects into predefined classes based on known knowledge. Classification has been an important research topic in machine learning and data mining. Different classification methods have been proposed and applied to deal with various real-world problems. Unlike unsupervised learning such as clus...

متن کامل

Toward more realistic drug–target interaction predictions

A number of supervised machine learning models have recently been introduced for the prediction of drug-target interactions based on chemical structure and genomic sequence information. Although these models could offer improved means for many network pharmacology applications, such as repositioning of drugs for new therapeutic uses, the prediction models are often being constructed and evaluat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014