Nebulin regulates actin filament lengths by a stabilization mechanism

نویسندگان

  • Christopher T. Pappas
  • Paul A. Krieg
  • Carol C. Gregorio
چکیده

Efficient muscle contraction requires regulation of actin filament lengths. In one highly cited model, the giant protein nebulin has been proposed to function as a molecular ruler specifying filament lengths. We directly challenged this hypothesis by constructing a unique, small version of nebulin (mini-nebulin). When endogenous nebulin was replaced with mini-nebulin in skeletal myocytes, thin filaments extended beyond the end of mini-nebulin, an observation which is inconsistent with a strict ruler function. However, under conditions that promote actin filament depolymerization, filaments associated with mini-nebulin were remarkably maintained at lengths either matching or longer than mini-nebulin. This indicates that mini-nebulin is able to stabilize portions of the filament it has no contact with. Knockdown of nebulin also resulted in more dynamic populations of thin filament components, whereas expression of mini-nebulin decreased the dynamics at both filament ends (i.e., recovered loss of endogenous nebulin). Thus, nebulin regulates thin filament architecture by a mechanism that includes stabilizing the filaments and preventing actin depolymerization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nebulin regulates the assembly and lengths of the thin filaments in striated muscle

In many tissues, actin monomers polymerize into actin (thin) filaments of precise lengths. Although the exact mechanisms involved remain unresolved, it is proposed that "molecular rulers" dictate the lengths of the actin filaments. The giant nebulin molecule is a prime candidate for specifying thin filament lengths in striated muscle, but this idea has never been proven. To test this hypothesis...

متن کامل

Nebulin interacts with CapZ and regulates thin filament architecture within the Z-disc.

The barbed ends of actin filaments in striated muscle are anchored within the Z-disc and capped by CapZ; this protein blocks actin polymerization and depolymerization in vitro. The mature lengths of the thin filaments are likely specified by the giant "molecular ruler" nebulin, which spans the length of the thin filament. Here, we report that CapZ specifically interacts with the C terminus of n...

متن کامل

eIF2 activated in spots

An actin ruler n page 947, McElhinny et al. suggest that nebulin is a molecular ruler for actin filaments in muscle cells. Muscle physiology depends on the precise alignment, length, and overlap of thin (actin) and thick (myosin) filaments. Capping proteins such as Tmod stop the growing and shrinking of dynamic thin filaments but lack the innate ability to know when to do so. The new results sh...

متن کامل

The nebulin repeat protein Lasp regulates I-band architecture and filament spacing in myofibrils

Mutations in nebulin, a giant muscle protein with 185 actin-binding nebulin repeats, are the major cause of nemaline myopathy in humans. Nebulin sets actin thin filament length in sarcomeres, potentially by stabilizing thin filaments in the I-band, where nebulin and thin filaments coalign. However, the precise role of nebulin in setting thin filament length and its other functions in regulating...

متن کامل

New Insights into the Structural Roles of Nebulin in Skeletal Muscle

One important feature of muscle structure and function that has remained relatively obscure is the mechanism that regulates thin filament length. Filament length is an important aspect of muscle function as force production is proportional to the amount of overlap between thick and thin filaments. Recent advances, due in part to the generation of nebulin KO models, reveal that nebulin plays an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 189  شماره 

صفحات  -

تاریخ انتشار 2010