An Elementary and Computational Approach to Heegner Points
نویسنده
چکیده
In this paper we present a method for explicitly computing rational points on elliptic curves using Heegner points. This method was crucial to the proof of Gross-Zagier, which proves the rank one case of the Birch and Swinnerton-Dyer Conjecture. Although this use of Heegner points can be found in many books and articles, we strive here to present it in a more concrete and complete form, and using explicit and elementary tools.
منابع مشابه
Explicit Heegner Points: Kolyvagin’s Conjecture and Non-trivial Elements in the Shafarevich-Tate Group
Kolyvagin used Heegner points to associate a system of cohomology classes to an elliptic curve over Q and conjectured that the system contains a non-trivial class. His conjecture has profound implications on the structure of Selmer groups. We provide new computational and theoretical evidence for Kolyvagin’s conjecture. More precisely, we explicitly compute Heegner points over ring class fields...
متن کاملHeegner points, Stark-Heegner points, and values of L-series
Elliptic curves over Q are equipped with a systematic collection of Heegner points arising from the theory of complex multiplication and defined over abelian extensions of imaginary quadratic fields. These points are the key to the most decisive progress in the last decades on the Birch and Swinnerton-Dyer conjecture: an essentially complete proof for elliptic curves over Q of analytic rank ≤ 1...
متن کاملConstructing Rational Points on Elliptic Curves Using Heegner Points
These are the notes I wrote for my candidacy talk. The aims for this talk were to understand Heegner points, examine the different ways they can be characterized, and get an idea of how to construct rational points on an elliptic curve using Heegner points. I cite some good references at the end if you are also trying to begin learning about this beautiful topic. The goal of this talk is to exp...
متن کاملEquidistribution of Heegner Points and Ternary Quadratic Forms
We prove new equidistribution results for Galois orbits of Heegner points with respect to reduction maps at inert primes. The arguments are based on two different techniques: primitive representations of integers by quadratic forms and distribution relations for Heegner points. Our results generalize one of the equidistribution theorems established by Cornut and Vatsal in the sense that we allo...
متن کاملCHOW-HEEGNER POINTS ON CM ELLIPTIC CURVES AND VALUES OF p-ADIC L-FUNCTIONS
Introduction 1 1. Basic notions 6 1.1. Motives for rational and homological equivalence 6 1.2. Algebraic Hecke characters 7 1.3. The motive of a Hecke character 8 1.4. Deligne-Scholl motives 9 1.5. Modular parametrisations attached to CM forms 10 1.6. Generalised Heegner cycles and Chow-Heegner points 13 1.7. A special case 15 2. Chow-Heegner points over Cp 15 2.1. The p-adic Abel-Jacobi map 15...
متن کامل