Fredholm transform and local rapid stabilization for a Kuramoto–Sivashinsky equation

نویسندگان

  • Jean-Michel Coron
  • Qi Lü
چکیده

This paper is devoted to the study of the local rapid exponential stabilization problem for a controlled Kuramoto–Sivashinsky equation on a bounded interval. We build a feedback control law to force the solution of the closed-loop system to decay exponentially to zero with arbitrarily prescribed decay rates, provided that the initial datum is small enough. Our approach uses a method we introduced for the rapid stabilization of a Korteweg–de Vries equation. It relies on the construction of a suitable integral transform and can be applied to many other equations. © 2015 Elsevier Inc. All rights reserved. MSC: 93D15; 35Q53

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Boundary local null-controllability of the Kuramoto-Sivashinsky equation

We prove that the Kuramoto-Sivashinsky equation is locally controllable in 1D and in 2D with one boundary control. Our method consists in combining several general results in order to reduce the nullcontrollability of this nonlinear parabolic equation to the exact controllability of a linear beam or plate system. This improves known results on the controllability of Kuramoto-Sivashinsky equatio...

متن کامل

Null Controllability and Stabilization of the Linear Kuramoto-sivashinsky Equation

In this article, we study the boundary controllability of the linear Kuramoto-Sivashinsky equation on a bounded interval. The control acts on the first spatial derivative at the left endpoint. First, we prove that this control system is null controllable. It is done using a spectral analysis and the method of moments. Then, we introduce a boundary feedback law stabilizing to zero the solution o...

متن کامل

Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

متن کامل

Computational Study of the Dispersively Modified Kuramoto-Sivashinsky Equation

We analyze and implement fully discrete schemes for periodic initial value problems for a general class of dispersively modified Kuramoto–Sivashinsky equations. Time discretizations are constructed using linearly implicit schemes and spectral methods are used for the spatial discretization. The general case analyzed covers several physical applications arising in multi-phase hydrodynamics and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015