Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans.
نویسندگان
چکیده
Glucose tolerance is lower in the evening and at night than in the morning. However, the relative contribution of the circadian system vs. the behavioral cycle (including the sleep/wake and fasting/feeding cycles) is unclear. Furthermore, although shift work is a diabetes risk factor, the separate impact on glucose tolerance of the behavioral cycle, circadian phase, and circadian disruption (i.e., misalignment between the central circadian pacemaker and the behavioral cycle) has not been systematically studied. Here we show--by using two 8-d laboratory protocols--in healthy adults that the circadian system and circadian misalignment have distinct influences on glucose tolerance, both separate from the behavioral cycle. First, postprandial glucose was 17% higher (i.e., lower glucose tolerance) in the biological evening (8:00 PM) than morning (8:00 AM; i.e., a circadian phase effect), independent of the behavioral cycle effect. Second, circadian misalignment itself (12-h behavioral cycle inversion) increased postprandial glucose by 6%. Third, these variations in glucose tolerance appeared to be explained, at least in part, by different mechanisms: during the biological evening by decreased pancreatic β-cell function (27% lower early-phase insulin) and during circadian misalignment presumably by decreased insulin sensitivity (elevated postprandial glucose despite 14% higher late-phase insulin) without change in early-phase insulin. We explored possible contributing factors, including changes in polysomnographic sleep and 24-h hormonal profiles. We demonstrate that the circadian system importantly contributes to the reduced glucose tolerance observed in the evening compared with the morning. Separately, circadian misalignment reduces glucose tolerance, providing a mechanism to help explain the increased diabetes risk in shift workers.
منابع مشابه
Circadian misalignment increases cardiovascular disease risk factors in humans.
Shift work is a risk factor for hypertension, inflammation, and cardiovascular disease. This increased risk cannot be fully explained by classic risk factors. One of the key features of shift workers is that their behavioral and environmental cycles are typically misaligned relative to their endogenous circadian system. However, there is little information on the impact of acute circadian misal...
متن کاملAdverse metabolic and cardiovascular consequences of circadian misalignment.
There is considerable epidemiological evidence that shift work is associated with increased risk for obesity, diabetes, and cardiovascular disease, perhaps the result of physiologic maladaptation to chronically sleeping and eating at abnormal circadian times. To begin to understand underlying mechanisms, we determined the effects of such misalignment between behavioral cycles (fasting/feeding a...
متن کاملDisrupting Rhythms: Diet-Induced Obesity Impairs Diurnal Rhythms in Metabolic Tissues
Circadian rhythms are essential processes that coordinate the timing of basic organismal functions at the molecular, cellular, and behavioral levels. Oscillations are generated by the core molecular clock, which is composed of transcriptional activators (such as Bmal1 and Clock) and repressors (such as the Period gene family). These activators are present in many types of central and peripheral...
متن کاملTiming Is Everything: Implications for Metabolic Consequences of Sleep Restriction
Type 2 diabetes (T2D) is a complex disease driven by a combination of genetic and environmental factors. In recent years, several lines of evidence suggest that circadian disruption and sleep loss contribute to disease pathogenesis. Epidemiologic studies indicate that shift work is associated with an increased risk of T2D (1,2). Shift work is a prime example of circadian disruption, altering th...
متن کاملDrosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 17 شماره
صفحات -
تاریخ انتشار 2015