Convex Quadratic Programming for Exact Solution of 0-1 Quadratic Programs
نویسندگان
چکیده
Let (QP ) be a 0-1 quadratic program which consists in minimizing a quadratic function subject to linear constraints. In this paper, we present a general method to solve (QP ) by reformulation of the problem into an equivalent 0-1 program with a convex quadratic objective function, followed by the use of a standard mixed integer quadratic programming solver. Our convexification method, which is the best in a certain sense, uses the equality constraints of (QP ) and requires the solution of a semidefinite program. We apply it to the densest k-subgraph problem and report experimental results showing that, for this graph problem, the approach outperforms existing methods. Keyword : Quadratic 0-1 programming, Convex quadratic programming, semidefinite programming, densest k-subgraph, Experiments.
منابع مشابه
Global convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملSolving General Convex Qp Problems via an Exact Quadratic Augmented Lagrangian with Bound Constraints
Large convex quadratic programs, where constraints are of box type only, can be solved quite eeciently 1], 2], 12], 13], 16]. In this paper an exact quadratic augmented Lagrangian with bound constraints is constructed which allows one to use these methods for general constrained convex quadratic programming. This is in contrast to well known exact diierentiable penalty functions for this type o...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملApplying a Newton Method to Strictly Convex Separable Network Quadratic Programs
Introduction This paper describes the application of Newton Method for solving strictly convex separable network quadratic programs. The authors provide a brief synopsis of separable network quadratic programming and list the various techniques for solving the same. The main thrust of the paper is succinctly identified by the following: 1. Providing a generic subroutine that can be used by vari...
متن کامل