Perfect histogram matching PCA for face recognition
نویسندگان
چکیده
We present an enhanced principal component analysis (PCA) algorithm for improving rate of face recognition. The proposed pre-processing method, termed as perfect histogram matching, modifies the image histogram to match a Gaussian shaped tonal distribution in the face images such that spatially the entire set of face images presents similar facial gray-level intensities while the face content in the frequency domain remains mostly unaltered. Computationally inexpensive, the perfect histogram matching algorithm proves to yield superior results when applied as a pre-processing module prior to the conventional PCA algorithm for face recognition. Experimental results are presented to demonstrate effectiveness of the technique.
منابع مشابه
Face Processing & Frontal Face Verification
In this report we first review important publications in the field of face recognition; geometric features, templates, Principal Component Analysis (PCA), pseudo-2D Hidden Markov Models, Elastic Graph Matching, as well as other points are covered; important issues, such as the effects of an illumination direction change and the use of different face areas, are also covered. A new feature set (t...
متن کاملFace Recognition Using Holistic Based Approach
Face recognition is the highest generous method for identification of an individual. Principal Component Analysis (PCA) is an efficient technique to identify a face from a given image. For a static image holistic based approach uses the entire raw face image as input and feature based method is based on extracting local facial features, and geometric, appearance properties. To recognize a face ...
متن کاملWeighted Attribute Fusion Model for Face Recognition
Recognizing a face based on its attributes is an easy task for a human to perform as it is a cognitive process. In recent years, Face Recognition is achieved with different kinds of facial features which were used separately or in a combined manner. Currently, Feature fusion methods and parallel methods are the facial features used and performed by integrating multiple feature sets at different...
متن کاملFace Recognition Based on PCA Algorithm
This paper is proposed the face recognition method using PCA with neural network back error propagation learning algorithm .In this paper a feature is extracted using principal component analysis and then classification by creation of back propagation neural network. We run our algorithm for face recognition application using principal component analysis, neural network and also calculate its p...
متن کاملFace Detection at the Low Light Environments
Today, with the advancement of technology, the use of tools for extracting information from video are much wider in terms of both visual power and the processing power. High-speed car, perfect detection accuracy, business diversity in the fields of medical, home appliances, smart cars, humanoid robots, military systems and the commercialization makes these systems cost effective. Among the most...
متن کامل