Therapeutically Targeting Tumor Necrosis Factor-α/Sphingosine-1-Phosphate Signaling Corrects Myogenic Reactivity in Subarachnoid Hemorrhage.

نویسندگان

  • Kenji Yagi
  • Darcy Lidington
  • Hoyee Wan
  • Jessica C Fares
  • Anja Meissner
  • Manabu Sumiyoshi
  • Jinglu Ai
  • Warren D Foltz
  • Sergei A Nedospasov
  • Stefan Offermanns
  • Shinji Nagahiro
  • R Loch Macdonald
  • Steffen-Sebastian Bolz
چکیده

BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is a complex stroke subtype characterized by an initial brain injury, followed by delayed cerebrovascular constriction and ischemia. Current therapeutic strategies nonselectively curtail exacerbated cerebrovascular constriction, which necessarily disrupts the essential and protective process of cerebral blood flow autoregulation. This study identifies a smooth muscle cell autocrine/paracrine signaling network that augments myogenic tone in a murine model of experimental SAH: it links tumor necrosis factor-α (TNFα), the cystic fibrosis transmembrane conductance regulator, and sphingosine-1-phosphate signaling. METHODS Mouse olfactory cerebral resistance arteries were isolated, cannulated, and pressurized for in vitro vascular reactivity assessments. Cerebral blood flow was measured by speckle flowmetry and magnetic resonance imaging. Standard Western blot, immunohistochemical techniques, and neurobehavioral assessments were also used. RESULTS We demonstrate that targeting TNFα and sphingosine-1-phosphate signaling in vivo has potential therapeutic application in SAH. Both interventions (1) eliminate the SAH-induced myogenic tone enhancement, but otherwise leave vascular reactivity intact; (2) ameliorate SAH-induced neuronal degeneration and apoptosis; and (3) improve neurobehavioral performance in mice with SAH. Furthermore, TNFα sequestration with etanercept normalizes cerebral perfusion in SAH. CONCLUSIONS Vascular smooth muscle cell TNFα and sphingosine-1-phosphate signaling significantly enhance cerebral artery tone in SAH; anti-TNFα and anti-sphingosine-1-phosphate treatment may significantly improve clinical outcome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximal cerebral arteries develop myogenic responsiveness in heart failure via tumor necrosis factor-α-dependent activation of sphingosine-1-phosphate signaling.

BACKGROUND Heart failure is associated with neurological deficits, including cognitive dysfunction. However, the molecular mechanisms underlying reduced cerebral blood flow in the early stages of heart failure, particularly when blood pressure is minimally affected, are not known. METHODS AND RESULTS Using a myocardial infarction model in mice, we demonstrate a tumor necrosis factor-α (TNFα)-...

متن کامل

Tumor necrosis factor-α enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling.

BACKGROUND AND PURPOSE We sought to demonstrate that tumor necrosis factor (TNF)-α, via sphingosine-1-phosphate signaling, has the potential to alter cochlear blood flow and thus, cause ischemic hearing loss. METHODS We performed intravital fluorescence microscopy to measure blood flow and capillary diameter in anesthetized guinea pigs. To measure capillary diameter ex vivo, capillary beds fr...

متن کامل

KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R-/- mice.

OBJECTIVE Sphingosine 1-phosphate (S1P) partly accounts for antiatherogenic properties of high-density lipoproteins. We previously demonstrated that FTY720, a synthetic S1P analog targeting all S1P receptors but S1P receptor type 2, inhibits murine atherosclerosis. Here, we addressed the identity of S1P receptor mediating atheroprotective effects of S1P. APPROACH AND RESULTS Low-density lipop...

متن کامل

High density lipoprotein/sphingosine-1-phosphate-induced cardioprotection

High density lipoprotein (HDL) cholesterol has beneficial effects beyond its atheroprotective function in reverse cholesterol transport, including cardioprotection against ischemia reperfusion (IR) injuries. Two major constituents of HDL, namely the structural protein apolipoprotein AI (apoAI) and the sphingolipid sphingosine-1-phosphate (S1P) appear to contribute to this cardioprotective effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 46 8  شماره 

صفحات  -

تاریخ انتشار 2015