On Riemannian manifolds endowed with a locally conformal cosymplectic structure

نویسندگان

  • Ion Mihai
  • Radu Rosca
  • Valentin Ghisoiu
چکیده

We deal with a locally conformal cosymplectic manifoldM(φ,Ω,ξ,η,g) admitting a conformal contact quasi-torse-forming vector field T . The presymplectic 2-form Ω is a locally conformal cosymplectic 2-form. It is shown that T is a 3-exterior concurrent vector field. Infinitesimal transformations of the Lie algebra of ∧M are investigated. The Gauss map of the hypersurfaceMξ normal to ξ is conformal andMξ ×Mξ is a Chen submanifold ofM×M.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequality for Ricci curvature of certain submanifolds in locally conformal almost cosymplectic manifolds

Let M̃ be a (2m+ 1)-dimensional almost contact manifold with almost contact structure (φ,ξ,η), that is, a global vector field ξ, a (1,1) tensor field φ, and a 1-form η on M̃ such that φ2X =−X +η(X)ξ, η(ξ) = 1 for any vector field X on M̃. We consider a product manifold M̃×R, whereR denotes a real line. Then a vector field on M̃×R is given by (X , f (d/dt)), where X is a vector field tangent to M̃, t ...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

On 2 - Framed Riemannian Manifolds with Godbillon - Vey Structure Form

In the last decade, contact, almost contact, paracontact cosymplectic, and conformal cosymplectic manifolds carrying κ > 1 structure vector fields ξ have been studied by many authors, e.g. [2], [7], [11], [15]. In the present paper we consider a (2m + 2)-dimensional Riemannian manifold carrying two structure vector fields ξ (r ∈ {2m+1, 2m+2}), a (1, 1)-tensor field Φ, and a structure 2 form Ω o...

متن کامل

Statistical cosymplectic manifolds and their submanifolds

    In ‎this ‎paper‎, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005