On the Bounded Sum-of-Digits Discrete Logarithm Problem in Finite Fields
نویسنده
چکیده
In this paper, we study the bounded sum-of-digits discrete logarithm problem in finite fields. Our results concern primarily with fields Fqn where n|q− 1. The fields are called Kummer extensions of Fq. It is known that we can efficiently construct an element g with order greater than 2 in the fields. Let Sq(•) be the function from integers to the sum of digits in their q-ary expansions. We first present an algorithm that given g (0 ≤ e < q ) finds e in random polynomial time, provided that Sq(e) < n. We then show that the problem is solvable in random polynomial time for most of the exponent e with Sq(e) < 1.32n, by exploring an interesting connection between the discrete logarithm problem and the problem of list decoding of Reed-Solomon codes, and applying the Guruswami-Sudan algorithm. As a side result, we obtain a sharper lower bound on the number of congruent polynomials generated by linear factors than the one based on Stothers-Mason ABC-theorem. We also prove that in the field Fqq−1 , the bounded sum-of-digits discrete logarithm with respect to g can be computed in random time O(f(w) log4(qq−1)), where f is a subexponential function and w is the bound on the q-ary sum-of-digits of the exponent, hence the problem is fixed parameter tractable. These results are shown to be generalized to Artin-Schreier extension Fpp where p is a prime. Since every finite field has an extension of reasonable degree which is a Kummer extension, our result reveals an unexpected property of the discrete logarithm problem, namely, the bounded sum-of-digits discrete logarithm problem in any given finite field becomes polynomial time solvable in certain low degree extensions.
منابع مشابه
On the Bounded Sum-of-digits Discrete Logarithm Problem in Kummer and Artin-Schreier Extensions
In this paper, we study the discrete logarithm problem in the finite fields Fqn where n|q−1. The field is called a Kummer field or a Kummer extension of Fq. It plays an important role in improving the AKS primality proving algorithm. It is known that we can efficiently construct an element g with order greater than 2 in the fields. Let Sq(•) be the function from integers to the sum of digits in...
متن کاملGeneralized Jacobian and Discrete Logarithm Problem on Elliptic Curves
Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...
متن کاملThe new protocol blind digital signature based on the discrete logarithm problem on elliptic curve
In recent years it has been trying that with regard to the question of computational complexity of discrete logarithm more strength and less in the elliptic curve than other hard issues, applications such as elliptic curve cryptography, a blind digital signature method, other methods such as encryption replacement DLP. In this paper, a new blind digital signature scheme based on elliptic curve...
متن کاملEfficient Quantum Algorithms for Estimating Gauss Sums
We present an efficient quantum algorithm for estimating Gauss sums over finite fields and finite rings. This is a natural problem as the description of a Gauss sum can be done without reference to a black box function. With a reduction from the discrete logarithm problem to Gauss sum estimation we also give evidence that this problem is hard for classical algorithms. The workings of the quantu...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کامل