Debt Detection in Social Security by Adaptive Sequence Classification

نویسندگان

  • Shanshan Wu
  • Yanchang Zhao
  • Huaifeng Zhang
  • Chengqi Zhang
  • Longbing Cao
  • Hans Bohlscheid
چکیده

Debt detection is important for improving payment accuracy in social security. Since debt detection from customer transaction data can be generally modelled as a fraud detection problem, a straightforward solution is to extract features from transaction sequences and build a sequence classifier for debts. For long-running debt detections, the patterns in the transaction sequences may exhibit variation from time to time, which makes it imperative to adapt classification to the pattern variation. In this paper, we present a novel adaptive sequence classification framework for debt detection in a social security application. The central technique is to catch up with the pattern variation by boosting discriminative patterns and depressing less discriminative ones according to the latest sequence data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Debt Detection in Social Security by Sequence Classification Using Both Positive and Negative Patterns

Debt detection is important for improving payment accuracy in social security. Since debt detection from customer transactional data can be generally modelled as a fraud detection problem, a straightforward solution is to extract features from transaction sequences and build a sequence classifier for debts. The existing sequence classification methods based on sequential patterns consider only ...

متن کامل

Detection of Fake Accounts in Social Networks Based on One Class Classification

Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity ...

متن کامل

Detection of Breast Cancer Progress Using Adaptive Nero Fuzzy Inference System and Data Mining Techniques

Prediction, diagnosis, recovery and recurrence of the breast cancer among the patients are always one of the most important challenges for explorers and scientists. Nowadays by using of the bioinformatics sciences, these challenges can be eliminated by using of the previous information of patients records. In this paper has been used adaptive nero fuzzy inference system and data mining techniqu...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009