Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors

نویسندگان

  • Sibel Emir Diltemiz
  • Rüstem Keçili
  • Arzu Ersöz
  • Ridvan Say
چکیده

Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomimetic Receptors for Bioanalyte Detection by Quartz Crystal Microbalances — From Molecules to Cells †

A universal label-free detection of bioanalytes can be performed with biomimetic quartz crystal microbalance (QCM) coatings prepared by imprinting strategies. Bulk imprinting was used to detect the endocrine disrupting chemicals (EDCs) known as estradiols. The estrogen 17β-estradiol is one of the most potent EDCs, even at very low concentrations. A highly sensitive, selective and robust QCM sen...

متن کامل

QCM sensing of bisphenol A using molecularly imprinted hydrogelconducting polymer matrix

Molecular imprinting is a well-known fabrication technique for designing artificial receptors and molecular sensors. The technique resembles a lock and key mechanism and utilizes shape-complementary cavities within polymeric materials as molecular recognition sites for various relevant molecules. In this study, we prepared molecularly imprinted polypeptide gel layers based on cyclodextrin-modif...

متن کامل

Biotinyl moiety-selective polymer films with highly ordered macropores.

Macroporous polymer films with long-range uniformity and biotinyl-moiety selective recognition sites have been developed. A hierarchical molecular imprinting strategy afforded significant enhancements in quartz crystal microbalance (QCM) sensitivities towards biotinylated compounds.

متن کامل

Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles.

Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quar...

متن کامل

Molecular imprinted polymer coated QCM for the detection of nandrolone.

An acoustic wave sensor coated with an artificial biomimetic recognition element has been developed to selectively screen for nandrolone in the liquid phase. A highly specific covalently imprinted polymer (MIP) was spin coated onto one electrode of a quartz crystal microbalance (QCM) as a thin permeable film. Selective rebinding of the nandrolone was observed as a frequency shift in the QCM for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017