Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions.

نویسندگان

  • Andrea Candelli
  • Gijs J L Wuite
  • Erwin J G Peterman
چکیده

Complexity and heterogeneity are common denominators of the many molecular events taking place inside the cell. Single-molecule techniques are important tools to quantify the actions of biomolecules. Heterogeneous interactions between multiple proteins, however, are difficult to study with these technologies. One solution is to integrate optical trapping with micro-fluidics and single-molecule fluorescence microscopy. This combination opens the possibility to study heterogeneous/complex protein interactions with unprecedented levels of precision and control. It is particularly powerful for the study of DNA-protein interactions as it allows manipulating the DNA while at the same time, individual proteins binding to it can be visualized. In this work, we aim to illustrate several published and unpublished key results employing the combination of fluorescence microscopy and optical tweezers. Examples are recent studies of the structural properties of DNA and DNA-protein complexes, the molecular mechanisms of nucleo-protein filament assembly on DNA and the motion of DNA-bound proteins. In addition, we present new results demonstrating that single, fluorescently labeled proteins bound to individual, optically trapped DNA molecules can already be tracked with localization accuracy in the sub-10 nm range at tensions above 1 pN. These experiments by us and others demonstrate the enormous potential of this combination of single-molecule techniques for the investigation of complex DNA-protein interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining optical tweezers and scanning probe microscopy to study DNA-protein interactions.

We present the first results obtained with a new instrument designed and built to study DNA-protein interactions at the single molecule level. This microscope combines optical tweezers with scanning probe microscopy and allows us to locate DNA-binding proteins on a single suspended DNA molecule. A single DNA molecule is stretched taut using the optical tweezers, while a probe is scanned along t...

متن کامل

A marriage of techniques

measure different parameters can create powerful and effective experimental methodologies. Indeed, many scientific advances are driven by the success of new technological achievements. But marrying techniques that might have very distinct technical requirements is often extremely challenging. The article by Matthew Lang and colleagues in this issue of the Journal of Biology [1] describes the fi...

متن کامل

Dielectrophoretic manipulation of DNA in microelectrode gaps for single-molecule constructs.

The construction with biomolecules and their manipulation represent a key step for developing new miniaturized structures. Such micro or nanometer systems promise a variety of novel features. Dielectrophoresis (DEP) is a powerful tool for trapping and orienting individual molecules in microelectrode arrangements, and was demonstrated to be applicable to DNA. This relatively rigid biomolecule co...

متن کامل

Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers.

Nucleoprotein filament formation by recombinases is central to homologous recombination. To follow this process, we used fluorescent human Rad51 recombinase to visualize the interactions with double-stranded DNA (dsDNA). Fluorescence imaging revealed that Rad51 filament formation on dsDNA initiates from multiple nucleation points, resulting in Rad51-dsDNA nucleoprotein filaments interspersed wi...

متن کامل

Interlaced optical force-fluorescence measurements for single molecule biophysics.

Combining optical tweezers with single molecule fluorescence offers a powerful technique to study the biophysical properties of single proteins and molecules. However, such integration into a combined, coincident arrangement has been severely limited by the dramatic reduction in fluorescence longevity of common dyes under simultaneous exposure to trapping and fluorescence excitation beams. We p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 16  شماره 

صفحات  -

تاریخ انتشار 2011