Initializing of an RBF network by a genetic algorithm

نویسنده

  • Ludmila I. Kuncheva
چکیده

In this paper we use a genetic algorithm (GA) for selecting the initial seed points (prototypes, kernels) for a Radial Basis Function (RBF) classifier. The chromosome is directly mapped onto the training set and represents a subset: it contains 1 at the ith position if the ith element of the set is included, and 0, otherwise. Thus the GA serves a condensing technique that can hopefully lead to a small subset which still retains relevant classification information. We propose to use the set corresponding to the best chromosome from the final population as the seed points of the RBF network. Simulated annealing is used to tune the parameters of the radial function without changing kernels location. Experimental results with IRIS and two-spirals data sets are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of groundwater level using a hybrid genetic algorithm-neural network

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

متن کامل

Estimation of groundwater level using a hybrid genetic algorithm-neural network

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

متن کامل

Combining GAs and RBF Neural Networks for Fuzzy Rule Extraction from Numerical Data

The idea of using RBF neural networks for fuzzy rule extraction from numerical data is not new. The structure of this kind of architectures, which supports clustering of data samples, is favorable for considering clusters as if-then rules. However, in order for real if-then rules to be derived, proper antecedent parts for each cluster need to be constructed by selecting the appropriate subspace...

متن کامل

Prediction of the Effect of Polymer Membrane Composition in a Dry Air Humidification Process via Neural Network Modeling

Utilization of membrane humidifiers is one of the methods commonly used to humidify reactant gases in polymer electrolyte membrane fuel cells (PEMFC). In this study, polymeric porous membranes with different compositions were prepared to be used in a membrane humidifier module and were employed in a humidification test. Three different neural network models were developed to investigate several...

متن کامل

Comparing Two Methods of Neural Networks to Evaluate Dead Oil Viscosity

Reservoir characterization and asset management require comprehensive information about formation fluids. In fact, it is not possible to find accurate solutions to many petroleum engineering problems without having accurate pressure-volume-temperature (PVT) data. Traditionally, fluid information has been obtained by capturing samples and then by measuring the PVT properties in a laboratory. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 14  شماره 

صفحات  -

تاریخ انتشار 1997