M$^2$S-Net: Multi-Modal Similarity Metric Learning based Deep Convolutional Network for Answer Selection
نویسندگان
چکیده
Recent works using artificial neural networks based on distributed word representation greatly boost performance on various natural language processing tasks, especially the answer selection problem. Nevertheless, most of the previous works used deep learning methods (like LSTMRNN, CNN, etc.) only to capture semantic representation of each sentence separately, without considering the interdependence between each other. In this paper, we propose a novel end-to-end learning framework which constitutes deep convolutional neural network based on multi-modal similarity metric learning (M2S-Net) on pairwise tokens. The proposed model demonstrates its performance by surpassing previous state-of-the-art systems on the answer selection benchmark, i.e., TREC-QA dataset, in both MAP and MRR metrics.
منابع مشابه
A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملSimilarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملDeep Similarity Learning for Multimodal Medical Images
An effective similarity measure for multi-modal images is crucial for medical image fusion in many clinical applications. The underlining correlation across modalities is usually too complex to be modelled by intensity-based statistical metrics. Therefore, approaches of learning a similarity metric are proposed in recent years. In this work, we propose a novel deep similarity learning method th...
متن کاملLearning Image Embeddings using Convolutional Neural Networks for Improved Multi-Modal Semantics
We construct multi-modal concept representations by concatenating a skip-gram linguistic representation vector with a visual concept representation vector computed using the feature extraction layers of a deep convolutional neural network (CNN) trained on a large labeled object recognition dataset. This transfer learning approach brings a clear performance gain over features based on the tradit...
متن کاملICRC-HIT: A Deep Learning based Comment Sequence Labeling System for Answer Selection Challenge
In this paper, we present a comment labeling system based on a deep learning strategy. We treat the answer selection task as a sequence labeling problem and propose recurrent convolution neural networks to recognize good comments. In the recurrent architecture of our system, our approach uses 2-dimensional convolutional neural networks to learn the distributed representation for question-commen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.05519 شماره
صفحات -
تاریخ انتشار 2016